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PREFACE

Mathematics is one of the foundations of engineering. Because of the great impor-
tance of the physical behavior of engineering products, calculus usually lies at the
center of the mathematical education of engineers; itis employed in the mathemat-
ical formulation of physical problems. This formulation has contributed significant-
ly to the systematization of engineering and the mastering of engineering tasks.

Before computers were introduced into engineering, numerical solutions of the
mathematical formulations of engineering problems involving irregular geometry,
varying material properties, multiple influences and complex production pro-
cesses were difficult to determine. Nowadays, computers amplify human mental
capacities by a factor of 109 with respect to speed of calculation, storage capacity
and speed of communication; this has created entirely new possibilities for solving
mathematically formulated physical problems. New fields of science, such as com-
putational mechanics, and widely applied new computational methods, such as
the finite element method, have emerged.

While computers were being introduced, the character of engineering changed
profoundly. While the key to competitiveness once lay in using better materials, de-
veloping new methods of construction and designing new engineering systems,
success now depends just as much on organization and management. The rea-
sons for these changes include a holisitic view of the market, the product, the econ-
omy and society, the importance of organization and management in global com-
petition as well as the increased complexity of technology, the environment and
the interactions among those participating in planning and production.

Given the new character of engineering, the traditional mathematical foundations
no longer suffice. Branches of mathematics which are highly developed but have
so far been of little importance to engineers now prove to be important tools in a
computer-oriented treatment of engineering problems. These fields are, however,
not readily accessible to many engineers, since frequently even fundamental con-
cepts are not treated systematically in their education. Thus, there is no sound ba-
sis for a productive dialog between engineers and mathematicians. To make mat-
ters more difficult, many of the hitherto neglected fields are based directly on the
foundations of mathematics and hence exhibit a degree of abstraction which engi-
neers are not accustomed to.
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The developments in the use of computers in engineering have shown that an in-
adequate education in mathematics may have grave consequences. In the areas
of planning, organization and management, in particular, the potential of classical
graph theory was not brought to bear on the abstraction of computer models and
the systematization of the methods of solution. Numerous laws and methods
which, with a sufficient background in mathematics, could have been taken from
the literature, were reinvented with much effort. The foundations of topology fur-
nish an example of this phenomenon.

Due to the rapid development of information and communication technology, with
performance increasing by a factor of 100 per decade, new areas of application
are constantly emerging. This makes it particularly difficult to determine that part
of the abundant repertoire of mathematics which will form a solid basis for the prop-
er utilization of computers in engineering in the coming decades. In this book, we
try to compile these essentials. We have arranged the material so that it can be
learned in the order of the chapters of the book. We assume that traditional mathe-
matics for engineers is treated in addition : Essential branches of mathematics are
not addressed in this book, since there is a vast literature on them.

The treatment of foundations begins with logic in Chapter 1. There are various rea-
sons for this. For one, logic is a tool for the development of the other chapters of
the book. Also, the creation of models and processes requires a systematic ap-
proach, which relies on a consistent application of the laws of logic. An example
of the systematic use of logic is furnished by a correct treatment of implications and
equivalences.

Set theory, treated in Chapter 2, forms the basis for the mathematical structures
treated in the subsequent chapters. Set operations are of fundamental importance
in all areas of computer application. Set theory leads to concepts like relation and
mapping, which are fundamental for the classification and ordering of information
and hence for approaches like object-oriented modelling.

Mathematics contains basic algebraic, ordinal and topological structures. All other
branches of mathematics rest on these basic structures, which are treated in
Chapters 3 to 5.

Algebraic structures describe operations on elements of sets. In contrast to tradi-
tional mathematics for engineers, the restriction to real numbers is lifted in order
to lay a systematic foundation for general operations on values of different types,
for instance logical variables, sets, vectors and matrices. These foundations are
applied in all subsequent chapters.
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Ordinal structures are of paramount importance for many computer-based algo-
rithms. Reliable algorithms require a precise treatment of the properties of order
relations and a systematic distinction between comparable and incomparable ele-
ments of a set. Many data structures cannot be designed or implemented without
an understanding of order relations and their properties. The study of the conver-
gence properties of iterative and sorting algorithms also relies on ordinal struc-
tures.

If a system of subsets is singled out in a set, the set acquires a topological struc-
ture. Topological structures form the basis for determining connectedness and
separation of sets, convergence of sequences, nets and filters, compactness of
spaces and continuity of functions. The convergence of approximation methods
for solving the mathematical formulation of physical problems cannot be studied
without an understanding of topological spaces. The description of geometric
shapes on the computer also depends on a reliable analysis of the associated
problems in topology.

Quantification in engineering relies on the natural, whole, rational, real and com-
plex number systems and the quaternions. These number systems exhibit differ-
ent algebraic, ordinal and topological structures, which are treated in Chapter 6.
Knowledge of the properties of the number systems is essential for constructing
reliable numerical algorithms.

Groups, treated in Chapter 7, have played an important role in the development
of mathematics. Group theory deals with an operation on two elements of a set,
the result of which is again an element of the set. Two of these three values are
known, and the third value (an operand or the result) is to be determined. The
structure of groups proves to be extraordinarily rich. It allows a systematic treat-
ment of many fundamental mathematical problems. For example, Galois used it
to prove that a circle cannot be squared with compass and straightedge alone. A
systematic treatment of geometry can also be carried out on the basis of group
theory. The practical applications of group theory include the systematic analysis
of the topology of triangulated bodies.

In designing models and algorithms, the description of the relations between the
elements of sets is of fundamental importance. This is the subject of graph theory,
treated in Chapter 8. Graph theory relies on the algebra of relations. This algebra,
in which graphs are described by matrices, leads to a set of theories and methods
which allow the properties of graphs to be determined algebraically. Many practical
problems in engineering can be solved using graphs, including problems in man-
agement and organization. Among these are the determination of paths in traffic
networks;of reliability,in,complex;systems and of the optimal order of processing
steps.
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Tensor theory, treated in Chapter 9, forms the basis for a reliable formuiation of
physical engineering problems. Tensor formulations have the special property of
being independent of the chosen coordinate system. This aids the understanding
of the essential characteristics of the formulated problems and thus facilitates the
systematic development of algorithms. It is on this basis that complex physical pro-
cesses in solids, liquids and multi-phase systems can be rendered susceptible to
a universally valid implementation.

Engineers deal with events that depend on chance : The repetition of an experi-
ment under seemingly identical conditions yields different results. Random events
are studied using stochastical methods, treated in Chapter 10. These methods as-
sign probabilities to the different outcomes of an experiment. There are typical
probability distributions in engineering, for example for the reliability of a system
of components and for the behavior at the nodes of a traffic network. Random pro-
cesses for time-dependent random variables are of great practical importance.
Their description using Markov chains forms the basis of the theory of queues,
which is applied in many computer simulations of processes in engineering.

The chapters of the book are structured uniformly. Each chapter begins with an
introduction, which highlights the main points of the chapter. It uses concepts and
mentions properties which are defined and explained in subsequent parts of the
chapter. The sections also begin with introductions, which are similarly structured.
Every paragraph of the text begins with a term which appears in boldface for em-
phasis. This term is explained in the paragraph. The highlighted terms are in-
tended to aid the reader in grasping the structure of the sections of the book with
little effort. Proofs are included in the text, in particular where they significantly aid
comprehension or form the basis for the development of algorithms for computer
implementations.

The desire to write this book emerged during our long-standing cooperation at the
Technische Universitat Berlin in the area of "Theoretische Methoden der Bau- und
Verkehrstechnik” (theoretical methods in civil engineering). While developing this
field together, we realized that the topics covered in education and the information
technology employed are short-lived compared to the content of other areas of en-
gineering. Yet the application of computer science in engineering needs a stable
basis. Out of this realization grew the desire to compile the mathematical founda-
tions which are independent of the rapid developments and incessant changes in
a book and thus to create a durable basis for future developments. The book differs
significantly from our lecture notes, which deal with current information and com-
munication technologies, including development environments and their applica-
tions in engineering.
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Dr. Felix Pahl played an important role in shaping the book as a whole. He repeat-
edly proofread the chapters with great care and used his background as a physicist
to make valuable suggestions for structuring the material. Particularly in the chap-
ters on topology and group theory, Dr. Pahl contributed to most of the proofs and
provided invaluable assistance in formulating them concisely. His special commit-
ment to this book deserves our personal thanks.

The content of the present book imposes strong demands on the graphical design
of the text, the figures and the formulas. With admirable intuition, Mrs. Elizabeth
Maue has given the book an attractive appearance. As the book took shape over
an extended period of time, during which all chapters were thoroughly revised sev-
eral times, her patience has been put to a severe test. Mrs. Maue’s committed par-
ticipation, which resulted in the particularly appealing presentation of this book, de-
serves our grateful recognition.

This book took shape over the course of more than seven years. During this time
our wives, Irmgard Pahl and Heidemarie Damrath, showed great understanding
for our extraordinary workload. By their great patience, they gave us the freedom
and support without which this book could not have been completed in its present
form. We thank them with all our heart.

Berlin, May 2000

Peter Jan Pahl
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1 LOGIC

1.1 REPRESENTATION OF THOUGHT

Logic : Science structures human thought. It divides thought into individual
thoughts, represents the content of these thoughts and distinguishes between true
and false thoughts. Logic deals with methods that reduce misunderstandings in
the representation of thoughts, and with consistency in deducing the truth of
certain thoughts from the truth of given other thoughts. It follows that logic is
fundamental to science.

Everyday language is not suitable as an instrument of logic, as it is ambiguous.
Science therefore employs formal logic, which is expressed in a formal (artificial)
language. Formal logic is an area of mathematics which makes the formulation of
concepts more precise and investigates contradictions in theories. Essential tools
of formal logic are symbolization, formalization and evaluation.

Symbolization is the representation of thoughts in a formal language. The core
of this artificial language is a character set. The characters (symbols) in the char-
acter set must be separable; it must be possible to identify them uniquely. The
character set is used to form character strings. Each thought is described by three
character strings : the content, the label and the value of the thought. This formal
representation of a thought is called a statement. The label identifies the state-
ment. The value assigns the statement to one of the classes true and false.

Formalization is a set of rules which leads from given statements to other state-
ments in a definite manner. This process is called logical deduction. Operations
which describe relationships between statements are the core of formalization. A
relationship between statements consists of arguments, a rule and a result. The
arguments and the result are statement values. The rule prescribes the value of
the result for each combination of values of the arguments. The rules of operations
are stipulated and represented by a symbol. The part of formal logic which deals
with operations on statements is called propositional (sentential) logic.

Evaluation is the assignment of the content of a statement to one of the classes
true and false. The content of a statement is said to be true if its assertion holds
according to the common judgement of a given group of people. In order to evalu-
ate a statement, the character string of its content is resolved into its constituents,
which are called language elements. A sequence of language elements is called
an expression. The rules for constructing admissible expressions from the charac-
ter set of the language are called the syntax of the language. The relationship be-
tween an expression which is admissible as the content of a statement and the
value of this statement is called the semantics of the language. The part of formal
logicithat.deals,with;the;syntax:and;semantics of formal languages is called predi-
cate logic.
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2 1.2 Elementary Concepts

1.2 ELEMENTARY CONCEPTS

Concepts which carry the same meaning for all participants form the basis for com-
munication between humans. For some fundamental concepts, agreement among
the participants is presumed. Using these fundamental concepts, new concepts
are defined, and these are in turn used to define further concepts. Some elemen-
tary concepts used in the formal description of thought are defined in the following.

Set : Objects of thought or of the senses which are separable and can be identi-
fied uniquely are called elements. A collection of elements with similar properties
is called a set. Each property of an element is described either by its value (predi-
cate) or by rules for determining its value. The set of all values which a property
can take is called the range of the property. The elements of a set are uniquely
identified using a property of the elements which takes different values for all pairs
of elements. This property is called the name (label, identifier) of the element.

Sequence : A sequence is a collection of elements which are chosen succes-
sively from a given set. By virtue of the order of these choices, each element of a
sequence has an additional property which it does not have in the set. The order
may, for instance, be described using natural numbers, since each natural number
other than zero has a predecessor. The additional property makes it possible to
choose an element of the given set for the sequence repeatedly while maintaining
unigueness of the elements in the sequence.

Character string : A set of separable and uniquely identifiable symbols is called
a character set. A sequence chosen from the character set is called a character
string. To represent the order of the characters in the sequence, one chooses a
convention, for instance horizontal arrangement from left to right. The beginning
and the end of a character string are indicated according to stipulated rules, for
instance by marking them with the character ”.

Value : A character string is called a value if it identifies an element of a set. The
value is called a constant if the character string is the name of an element of the
set. The value is called a variable if the character string is replaced by the name
of an element of the set according to stipulated rules.

Operation : A rule which assigns precisely one constant to a given sequence of
constants is called an operation. The given constants are called the arguments of
the operation. The result is called the value of the operation. The rule for an opera-
tion is designated by a symbol.
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Example 1 : Elements of a character string

Let the character set Z ={a,b,c} be given. The character string "babac” is chosen
from this set. This character string corresponds to the set F = {(a, 2), (a, 4), (b, 1),
(b, 3), (c, 5)}. Each element of the set F is an ordered pair. It consists of an element
of the character set Z, to which an element of the set N = {1, 2, 3, 4, 5} of numbers
is assigned as an additional property. The elements of the character string F are
unique. Their order in F is arbitrary.

Example 2 : Operation on values

The operation "addition” designated by the symbol + is defined for the natural num-
bers. The rules of addition assign the result 8 to the arguments 3 and 5. This opera-
tion is represented by the formula 3 + 5 = 8.

Example 3 : Russel’s antinomy

Contradictions may arise if sets are defined to contain sets as elements. A contra-
dictory definition of a set is called an antinomy. An example of such an antinomy
is furnished by the collection R of all sets M,,M,,... which are not contained in
themselves :

(1) Under the assumption that R contains itself, R is one of the sets M, of the
collection. However, the sets M; are by definition not contained in them-
selves. It follows that R contains itself and at the same time does not contain
itself.

(2)  Under the assumption that R does not contain itself, R is by definition one of
the sets M;. It follows that R is an element of the collection and therefore con-
tained in itself. R therefore contains itself and at the same time does not con-
tain itself.

As R cannot simultaneously contain itself and not contain itself, the collection R
is not a set. Such contradictory definitions of sets must be ruled out in set theory.

Definition : Thoughts are composed of concepts. The precise delimitation of a
concept using other concepts is called the definition of the concept. The concept
acquires its meaning through this delimitation. Concepts whose meaning is postu-
lated are called fundamental concepts. All other concepts are defined.

Explicit definition : A definition is said to be explicit if the concept to be defined
(definiendum) is delimited using fundamental concepts or concepts that have al-
ready been defined (definiens). Wherever it occurs, the definiendum may be re-
placed by the definiens. The definition of a statement value is indicated using the
symbol :< (equivalent by definition). The definition of terms which are not state-
ment values is indicated using the symbol := (equal by definition).

statement value..definiendum.:<>- definiens
term :  definiendum := definiens
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Implicit definition : A definition is said to be implicit if concepts are delimited by
their mutual relationships. The relationships are assumed to be true statements.
Fundamental concepts such as natural number, distance and area are defined
implicitly.

Recursive definition : Let a concept G(n) which depends on a natural number
n be given. The definition of this concept is said to be recursive if G(0) is defined
first, and then each G(n) for n >0 is defined with G(n —1) as definiens. For
instance, the concept n! (n factorial) is defined recursively by 0! :=1 and
n!:=n(n-1).
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13 PROPOSITIONAL LOGIC

Introduction : The value of a statement can be true, false or undetermined. In
a stochastic treatment, probabilities are assigned to these statement values. In a
deterministic treatment, the statement has precisely one of the specified values.
If no undetermined statement values are allowed, the logic is said to be two-valued.

For a two-valued logic, statements are divided into the class of true statements and
the class of false statements. Thus, each statement is assigned a truth value,
which is either true or false. Given statements may be connected to form a new
statement. In propositional logic, connectives are defined such that the truth value
of the new statement results from the truth values of the given statements in a
definite manner.

Several statements may be connected to form an expression. There are expres-
sions which are always true, regardless of the truth values of the individual state-
ments. Such expressions are called logically valid expressions or tautologies.
Among the tautologies, logical equivalences and logical implications are espe-
cially important. Logical equivalences are used to transform logical expressions
into equivalent expressions. Logical implications are used to deduce new true
statements from given true statements.

1.3.1 LOGICAL VARIABLES AND CONNECTIVES

Statement : A statement (proposition) is the formulation of a thought in a lan-
guage. Each statement consists of a label, a content and a value. The label iden-
tifies the thought, the content defines the thought, and the value evaluates the
thought. Formally, a statement is designated by a letter, its content is defined by
a character string, and the result of its evaluation is expressed as a truth value.

Truth value : The determination of the truth value of a statement is a fundamen-
tal problem, and various approaches to its solution have been investigated. In a
two-valued logic, it is assumed that statements can be divided into the class of true
statements and the class of false statements. Accordingly, each statement is
assigned either the truth value false (designated by f or 0) or the truth value true
(designated by t or 1). A statement to which a truth value has been assigned is
called a statement constant. A statement to which a truth value has not yet been
assigned is called a statement variable. The truth value of a statement a is desig-
nated by T(a).
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Example 1 : Statements and truth values

The statement a :="Every triangle has three corners.” is true and therefore
possesses the truth value T(a) =t.

The statement b :="5 is less than 2.” is false and therefore possesses the truth
value T(b) =f.

The text "Congratulations!” is not a statement, as it cannot be assigned a truth
value.

Propositional connectives : Two given statements may be connected to form
a new statement using words like "and”, "or”, "if-then” and "if and only if-then”,
which are called propositional (sentential) connectives. Each of these connectives
corresponds to a definite rule for determining the truth value of the new statement
from the truth values of the given statements. It is irrelevant whether the content
of the statements being connected is related. The negation of a statement using
the word "not” is also treated as a connective.

Operator and operand : The symbol that represents the rules for the truth value
of connected statements is called an operator. In the context of set theory (see
Chapter 2), an operator is a relation. Each connective is associated with a corre-
sponding operator. The truth values of the connected statements are called the
operands of the connective. The following operators are often used :

Name ‘ Operator Connective ’ Meaning | Rank
negation - - a nota 5
conjunction A aAb aandb 4
disjunction v avVvob aorb 3
alternation @ adb eitheraorb 2
implication = a=> ifathenb 1
equivalence < | a<=b | aifand only if b | 0

Truth tables : For each operator, the rules for determining the truth value of the
new statement from the truth values of the given statements are represented by
atruth table. The values of the first operand a appear on the left; if there is a second
operand, its values appear at the top of the table. For each pair (a,b) of values, the
table contains the value of the connective indicated at the bottom.



0] 1
1 0
-a
0o 1
ofolo
1 0| 1
aAnb
0o 1
0] 0] 1
1 1 1
avb
0 1
0]0) 1
1 1 0
adb
0o 1
01l 1 1
1 0| 1
a=>b
0o 1
01l 1 0
170 )1

The negation of a statement a is designated by —a (not a). Itis
true if a is false. It is false if a is true.

The conjunction of two statements a, b is designated by arb
(aand b). ltis true if a is true and b is true. It is false if a is false
orb is false.

The disjunction of two statements a,b is designated by avb
(aorb). ltis true if ais true or b is true. It is false if a is false and
b is false.

The alternation of two statements a, b is designated by adb
(either a or b). It is true if a and b have different truth values.
It is false if a and b have the same truth value.

The implication of two statements a, b is designated by a = b
(if athenb). Itis true if a is false or b is true. It is false if a is true
and b is false. An implication is also called a subjunction.

The equivalence of two statements a, b is designated by a < b
(aifand only if b). It is true if a and b have the same truth value.
Itis false if a and b have different truth values. An equivalence
is also called a bijunction.



Example 2 : Propositional connectives
Let the following statements a,b and their truth values be given :

|

a:=
b:

1.3.1 Propositional Logic : Logical Variables and Connectives

"Every triangle has three corners”
"Every quadrangle is red”

The negations —aand —b are :

—a
-b

“Not every triangle has three corners”
"Not every quadrangle is red”

The conjunction a A b and the disjunction avb are :

arb

avb

The implication a = b and the equivalence a <> b are :

a=>b

a<sb

I

"Every triangle has three corners and

every quadrangle is red”

"Every triangle has three corners or
every quadrangle is red”

"If every triangle has three corners
then every quadrangle is red”

"Every triangle has three corners if and only if
every quadrangle is red”

T(a=Db) =

T(a<b) =

t

f

The examples demonstrate that the statements a and b are connected in a purely
formal manner, irrespective of the relation of their content. The truth values of the

various connectives are determined from the truth tables.

Operator basis :

For a connective involving one operand (unary connective),

22 = 4 different operators can be defined. One of these operators is designated by
the symbol —. The remaining unary operators are replaced by logical expressions,

which are shown underneath the following truth tables :

0

0

1

1

a

0

1

1

0

—-a

0

1

avVv(—a)

1

1

0

1

anA(—a)

0

0

For a connective involving two operands (binary connective), 22*2 = 16 different
operators can be defined. Four of these operators are designated by the symbols
AsmVer=>p<> The remaining binary.operators are replaced by logical expressions,

which are shown underneath the following truth tables :
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0o i 0 1 0o i 0 1
olo|o 0| 0] 1 ol 1] 1 0
1o 1 1111 1 ol1 1

aAnb avb a=b

0o 1 0o 1 0 1
o 1] 1 0 ol 1|1 0

1] 1 1 1

(@=b)v(b=a) -—(a=b)vVv (b=a) —~(a A Db) b=a
0o 1 0o 1 0o 1 0 1
of1]|0 oo/ O 0] 0] 1 0] 0| 1
110(0 11110 1100 1{1]0
—(a v b) —(a=Db) —~(b=a) —(a<b)
0o 1 0o 1 0 1 0 1
0 0| 1|1 0 0\1 o(1/|0
1 1100 1 0l1 1]11]0
(b=>a)A(bva) —-(aAb)A(@a=b) @vbya(@a=b) —(aAb)A(b=a)

The truth tables show thatthe set{—, A, v, =, < } of operators generates the 20
operators of the unary and binary connectives. The question arises whether fewer
generators would suffice. This is indeed the case :

(1) The set {—,A,v} generates all propositional connectives, since by the rule of
elimination the connectives a = b and a < b may be replaced by the following
equivalent expressions :

(@=b) & (—avhbh)
(@< b) & (mavb)a(av —b)

(2) Thesets {—,A} and {—, v} both generate all propositional connectives, since
by the rule of double negation and De Morgan’s laws the connectives a v b and
a A b may be replaced by the following equivalent expressions :

(@vb)  -—=(avb) & —(—~anr —b)

(@anb) & —=—-(@arb) & —(—av —b)
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The operator basis consists of a single operator. The operator | (not and, nand)
or the operator v (not or, nor) may be chosen. These operators are defined as
follows :

0o 1 0 1
o 1! 1 0 1!0
1 1,0 1 0!0
alb e - (aAb) (@avVb) & —(avb)

In the following table, the generators {—, A, v, =, < } are expressed in terms
of the basic operators. Note that the operators | and v are commutative but not
associative. Since the operators are not associative, expressions of the form
alblc oravbvc are not admissible without parentheses.

connective operator | operator V
i: < ala < aVa 7 ]
(anb) < (alb) !l (alb) < (avVa)V(pVb)
(avb) < (ala) |l (blb) < (avb)Vv(aVvb)
(a=Db) < (alb)la « (bV(@VDb)V(bV(avb))

(a<b) < (@ala)l (blb)I(alb) <« (aV(@Vb)V(bV(@Vb)




Logic 1

1.3.2 LOGICAL EXPRESSIONS

Expression : The elements of propositional logic are statement constants, state-
ment variables, operators and the technical characters (). A sequence of elements
is called an expression of propositional logic if it is formed according to the follow-
ing syntactic rules :

(1) Every statement constant and every statement variable is an expression.

(2) Ifa, b are expressions, then the connectives (—a), (aab), (avb), (a=>b)and
(a < b) are also expressions.

(3) Only sequences of elements formed by rules (1) and (2) are expressions.

Rank of the operators : Expressions formed according to the syntactic rules
contain many parentheses and are therefore difficult to read. To avoid the use of
parentheses, the following rules are stipulated :

(1) Exterior parentheses may be removed.

(2) Eachoperator has arank (see the table of operators). If two successive oper-
ators of different rank in a logical expression are not separated by paren-
theses, the operator of higher rank is applied first.

(3) If two operators of equal rank in a logical expression are not separated by
parentheses, they are applied from left to right.

Example 1 : Rank of the operators

—tat & —fvf expression
[ [ rank 5
|f—| t rank 4
f [ rank 3
L ' | rank O
f value

Formula : An expression of propositional logic containing one or more statement
variables describes a statement formally and is called a formula. The truth value
of an expression depends on the truth values of the statement variables.

Valuation : If every statement variable in an expression is assigned precisely
one truth value, the collection of these assignments is called a valuation of the
expression. If an expression contains n statement variables, then for n > 0 there
are exactly 2" different valuations.of the expression, in which each of the statement
variables takes one of the truth values t, f.
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Each valuation of an expression leads to a truth value for the expression, which
is determined according to the semantic rules of propositional logic. The semantic
rules are determined by the truth tables defined for the connectives. Thus the truth
value of an expression for a given valuation is calculated by logically evaluating
the expression using the truth tables.

Example 2 : Expression and valuation

The following sequence of elements is an expression; its subexpressions (connec-
tives) are underlined.

—anb <« (c=ba(avad) expression
S| |

Let the truth values t,f, f, t be assigned to the statement variables a, b, ¢, d of the
given expression. Using the truth tables, the expression is evaluated for this valua-
tion as follows :

—taf & f=fa(tvl)

L P

g b
f f

S

Logically valid, consistent and inconsistent expressions : The expressions
of propositional logic are classified with respect to their valuations and their truth
value as follows :

(1)  An expression which is true for all valuations is said to be logically valid (a
tautology).

(2) An expression which is true for at least one valuation is said to be logically
consistent.

(8) An expression which is not true for any valuation is said to be logically incon-
sistent (a contradiction).

In propositional logic, it is possible to decide in a finite number of steps whether
a given expression with a finite number of operands is logically valid, consistent
or inconsistent. In fact, if an expression contains n statement variables, then for
n > 0 there are exactly 2" different valuations. The expression can be evaluated
for each valuation using the truth tables for the connectives. Thus it takes at most
2" evaluations.to.decide.whether.the given expression is logically valid, consistent
or inconsistent.
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Example 3 :
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Logically valid, consistent and inconsistent expressions

The expression a A —a is inconsistent, as it is false for any valuation. This is
proved using the truth tables as follows :

a —a an-a
0 1 0
1 0 0

The expression ((a=>b) A b) = a is consistent but not logically valid, as it is true
for some but not all valuations. This is proved using the truth tables as follows :

a b ‘ a=b | (a=b)Ab
o 0 \ 1 0

0 1 1 1

1 0 0 \ 0 !
o

(a=b) Ab)y=a

1

The expression (a=b) < (—a v b) islogically valid, as itis true for any valuation.
This is proved using the truth tables as follows :

a b a=b [ -a
0 0 1 ] 1
0o 1 1 \ 1
10 0 ‘ 0
1 1 1 ‘ 0

-aVvb

(a=b)

1

|
|
|
|

(—a Vv b)
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1.3.3 LOGICAL NORMAL FORM

Logical equivalence : A logically valid expression of the forma < b (ais equiva-
lent to b) is called a logical equivalence. If a < b is a logical equivalence, then a
and b have the same truth value. The most important logical equivalences for ex-
pressions a, b, ¢ with the operators —, A, v are :

identity ant < a avf < a
invariance anf < f avt < 1
complementarity an—a <« f av-a <t
idempotency ana < a ava < a ]
commutativity aAb < bAa avb < bvVva
associativity (anb)ac = an(bac) (avb)vec < av (bve)
distributivity an(bve) <« (aAb) Vv (anc) | av (bAac) < (avb) A (avce)
absorption aA(avb) < a aVv(aab) & a

zuble negation - —-a < a a < - "a
De Morgan —(anb) <« -—-av —-b —~(avb) < =—-a A -b

The following logical equivalences are used in particular to reduce expressions
involving the operators =, < to equivalent expressions involving the operators
=, A, V.

elimination (@=Db) e (—avb) (a<b)e (a=b) A (a<=b)
(a<b) < (—avb) A (av —b) (aeb)es(@ab)v(-an —b)
contraposition | (a=b) « (-b= —a) (@aeb) = (—a= —b)

An expression of the form aab ... ac is called a general conjunction. An expres-
sion of the form avbv... vc is called a general disjunction. Due to the associativity
of the connectives A and v, no parentheses are necessary in these expressions.
The expression a is admitted as a special case of a general conjunction or disjunc-
tion.

Logical transformations : A given expression of propositional logic may be
transformed into a logically equivalent expression using logical equivalences : If
a < b is a logical equivalence and a occurs in the given expression, then a may
be replaced by b, since a and b possess the same truth value due to the logical
equivalence a < b. The aim of logical transformations is to exhibit a given expres-
sionsin-a;more-lucid.and.simple form:Representations which allow the truth value
of the expression to be read off directly are particularly important.
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Normal form : An expression of propositional logic is said to be in normal form
if it contains only statement variables and negated statement variables and the
operators A and V. A normal form may be disjunctive or conjunctive and also
canonical.

1. A normal form is said to be disjunctive if it is a general disjunction of sub-
expressions and each subexpression is a general conjunction of statement
variables or negated statement variables.

2. A normal form is said to be conjunctive if it is a general conjunction of sub-
expressions and each subexpression is a general disjunction of statement
variables or negated statement variables.

3. Adisjunctive or conjunctive normal form with n statement variables is said to
be canonical if the number of subexpressions is minimal and each subexpres-
sion contains each of the n statement variables either with or without negation.

Every expression has an equivalent disjunctive normal form and an equivalent
conjunctive normal form. Every consistent expression has an equivalent canonical
disjunctive normal form. Every expression which is not a tautology has an equiva-
lent canonical conjunctive normal form. The canonical disjunctive normal form and
the canonical conjunctive normal form of an expression are unique up to the order
of the subexpressions and of the variables inside the subexpressions.

Example 1 : Normal forms

The following expressions with the statement variables a, b, ¢ are in normal form:

disjunctive normal form
(@arb)v(maanba-c)v(—bac)
(@an —anc)v(aabaca —c)

conjunctive normal form
(avbvc)a(@av =b)a(—av ~bv —¢)
(—ravbv =bvg)

canonical disjunctive normal form
(@anbac)v(—an—-bac)v(ana-bac)
(@aabar—-c)v(—aaba -0

canonical conjunctive normal form

(avbv =c)a(av -bvc)v(av -bv —c)
(@avbve)a(—av =bvec)
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A canonical disjunctive normal form allows all valuations which yield the truth value
true to be read off directly. The canonical disjunctive normal form(a A b A —=c) v
(—a A b A c)is true if and only if one of the two subexpressions is true. The first
subexpression (a A b A —c) is true if and only if a is true and b is true and —c¢
is true. Thus it is true for the valuation (T(a), T(b), T(c)) = (i, 1, f). The second sub-
expression (—a A b A ¢)istrueif and only if —a istrue and b is true and c is true.
Thusitis true for the valuation (T(a), T(b), T(c)) = (f, t, t). The canonical disjunctive
normal form (@ A b A —¢) v (—a A b A ¢) is therefore true for the valuations
(T(@), T(b), T(c)) = (t,t,1), (f, 1,1).

A canonical conjunctive normal form allows all valuations which yield the truth
value false to be read off directly. The canonical conjunctive normal form (a v b
v c) A (—av —b v c)isfalseif and only if one of the two subexpressions is false.
The first subexpression (a v b v c) is false if and only if a is false and b is false
and c is false. Thus it is false for the valuation (T(a), T(b), T(c)) = (f, f, f). The
second subexpression (—a v —b v c) is false if and only if —a is false and —b
is false and ¢ is false. Thus it is false for the valuation (T(a), T(b), T(c)) = (i, t, f).
The canonical conjunctive normal form (a v b v c) A (—ma v —b v c¢) is therefore
false for the valuations (T(a), T(b), T(c)) = (f, f, ), (1, t, f).

Example 2 : Transformation to normal form

Every logical expression may be transformed to normal form in a finite number of
steps. This is demonstrated using the following expression with the statement vari-
ables a,b:

(a=b)ab = a

Step 1: The operators => are replaced using the rule of elimination :
(@a=Db) A b=a <
(—ravb) A b= a <
—-((—mavb) A b)va
Step 2: The expression is further transformed using the rule of double negation
and De Morgan’s laws :
—((mavb)yab)va <
(m(—~avb)v -byva <
((-(—~a)Aa—-byv -byva <
(@ A -b)v =b)va <

(a A =b) v (—b) v (a) disjunctive normal form
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Step 3 : The disjunctive normal form is expanded using the laws of identity and
complementarity and further transformed using the laws of distributivity :

@nar—=b)yv(ta-b)v(aat) <
(@n—-b)v(@av ~a)an —-b)yv(ana(bv —b)) <
(@n —-b)yv(ansn-b)v(—-ansr—-b)yv(@aab)v(anr —b)
Step 4 : The expression is reduced according to the law of idempotency by re-
moving multiple occurrences of subexpressions :
(@an —=b)v(aan—-b)yv(—maan-b)yv(@aabyv@a-b) <
(@n —b)v (—ana —b)v(anrb) canonical disjunctive normal form

The canonical disjunctive normal form is true for the valuations (T(a), T(b)) = (t,f),
(f, 1), (t, ). The logical expression

(@a=b)ab = a
may be transformed analogously into its canonical conjunctive normal form
(av —b)

The canonical conjunctive normal form is false for the valuation (T(a), T(b)) =

(f, 1).
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1.3.4 LOGICAL RULES OF INFERENCE

Logical implication : A logically valid expression of the form a = b with expres-
sions a, b is called a logical implication. If a = b is a logical implication and a is
true, then b is also true. If a is false, b may be true or false. The most important
logical implications for statements a, b, c are :

extremality f=a a=t

reflexivity a=>a a<a

contraction aAb=a avbea

monotonicity (@a=by=(@ Ac)=(b Ac) (@=by<=(avc)=(bVc
antitonicity (@=b)=(—-b= —a) (a=b)«<=(—-b = —a)
detachment (@a=byra=0>b (a=b)A —a=-b
transitivity (@a=b)A(b=c)=(@a=c)

The two rules of detachment are also called modus ponens and modus tollens,
respectively. The rule of transitivity is also called modus barbara. These rules are
frequently applied in logical deductions.

Logical implications may be obtained directly from logical equivalences: If a < b
is a logical equivalence, then a=>b and a <= b are logical implications. Every logical
equivalence thus leads to two logical implications.

Logical deduction : Logical deduction is based on logical implications. Let the
expression a => b be a logical implication. Then a = b is always true, independent
of the truth values for a,b. If a is false, then b is either true or false, since by
definition f = t and f = f are true. If a is true, then b is also true, since by definition
t=>tis true and t = f is false. Thus a true expression b may be deduced from a
true expression a.

Rules of inference : Rules of inference are used to deduce new true statements
from given true statements by logical implication.

(1) The first rule of detachment, a A (a = b) = b, yields the following rule of
inference: If the statement a is true and the implication a = b is true, then the
statement b is true.

(2) The second rule of detachment, (a=b) A =b= —a, yields the following rule
of inference : If the implication a = b is true and the statement —b is true,
then the statement —a is true.

(3) The rule of transitivity, (@ =>b) A (b =>¢) = (a=> c), yields the following rule
of inference:If the.implication.a=>b is true and the implication b = c is true,
then the implication a = c is true.
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These rules of inference are often presented in a scheme with two true premises
and the true conclusion.

true premise a a=Db a=b
true premise a=>b -b b=c
true conclusion b -a a=c¢c

Example 1 : Logical deduction
Rule (1) : modus ponens

a = "The light is red”
a=b = ’If the light is red, then the cars stop”
b := "The cars stop”

Rule (2) : modus tollens

a=>b = 7 If the light is red, then the cars stop”
-b := "The cars do not stop”
-a = "The light is not red”

Rule (3) : modus barbara

a=b := 7 If the light is red, then the cars stop”
b=c¢ := "If the cars stop, then a queue forms”
a=c := "If the light is red, then a queue forms”

The following inference is wrong, since the logical expression (a=b) A b=ais
not logically valid and hence does not yield a logical implication (see Example 3
in Section 1.3.2).

a=b = ’If the light is red, then the cars stop”
b = ”"The cars stop”
a = "The light is red”

The error in the inference may be demonstrated as follows : The cars stop not only
if the light is red, but also, for example, if an accident has occurred.



20 1.4 Predicate Logic

14 PREDICATE LOGIC

Introduction : Predicate logic is an extension of propositional logic. It investi-
gates the inner structure of statements. As in the case of a natural language, a
statement is divided into its constituents, subject and predicate. Subjects are the
topic of a statement, predicates describe the properties or relations of subjects.

Predicate logic allows quantified statements, which hold either for all subjects in
a given set or for at least one subject in a given set. These statements are called
universal statements and existential statements, respectively. Predicate logic
introduces quantifiers to formulate such statements.

First-order predicate logic is an extension of propositional logic which is obtained
by introducing constants and variables for subjects and predicates along with
quantifiers for subject variables. Set theory is an essential basis of predicate logic.
This section offers an introduction to first-order predicate logic.

Statement of predicate logic : A statement is called a statement of predicate
logic if it admits analysis into subjects and predicates. The names of imaginary or
real objects in a statement are called subjects. The names of properties or rela-
tions in a statement are called predicates. A predicate is said to be unary if it
describes a property of one subject. A predicate is said to be binary if it describes
a relationship between two subjects. A predicate is said to be n-ary (n-place) if it
describes a relationship among n subjects. A truth value is associated with each
statement of predicate logic.

Formula of predicate logic : A statement of predicate logic can be transformed
into a formula. Every subject of the statement is replaced by a statement variable.
The subject variables are usually designated by lowercase letters, for instance
X, ¥, z. Then every predicate is replaced by a predicate variable. Each predicate
variable is a truth value that depends on one or more subject variables. The predi-
cate variables are usually designated by uppercase letters. The designation of the
predicate variable is followed by a list of the subject variables on which the predi-
cate variable depends, enclosed in parentheses, for instance K(x, z). The predi-
cate variables are connected using operators.

Example 1 : Statements and formulas of predicate logic

The statement "x is prime” contains the subject "x” and the unary predicate "is
prime”. The subject "x” is replaced by the subject variable x € N. The predicate "is
prime” is replaced by the predicate variable P(x), which depends on x. The corre-
sponding.formula.is.P(x)..The statement P(3) has the value true, the statement
P(8) has the value false.
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The statement "x is less than y ” contains the subjects ”x” and "y” and the 2-place
(binary) predicate "is less than”. The subjects are replaced by the variables
X,y N, the predicate is replaced by the predicate variable K(x,y). The corre-
sponding formula is K(x, y). The statement K(2, 3) has the value true, the statement
K(3, 2) has the value false.

The statement "x is not less than y and less than z” contains the subjects "X, ”y”
and "Z” and the predicate "is less than” as well as the operators "not” and "and”.
The subjects are replaced by the variables x, y, z€ N, the predicate is replaced by
K(x, y) and K(x, z). The corresponding formula is = K(x,y) A K(x, z).

Quantifiers : Let a formula a(x) with the subject variable x and a reference set
(universe) M for x with the elements x4,X,,...,X,, be given. A logical expression of
the form a(x4) Aa(x,) A...na(x,) is called a universal statement. A universal
statement is true if and only if the statement a(x;) is true for every element x; of M.
Otherwise it is false. A logical expression of the form a(x;) v a(x,) v...v a(x,) is
called an existential statement. An existential statement is true if and only if there
is an element x; for which the statement a(x;) is true. The universal quantifier A
and the existential quantifier V are introduced to formulate universal and existen-
tial statements :

/\M a(x) "For every element x of M the value of a(x) is true”
xXe

VM a(x) "There is an element x of M for which the value of a (x) is true”
Xe

A universal quantifier

Vv existential quantifier

M reference set

The reference set M may be finite or infinite. The formulation of statements using
quantifiers is also applicable to formulas with several subject variables. If both
universal and existential quantifiers appear in such a formulation, their order is
important.

Example 2 : Universal and existential statements

The statement "In every plane triangle the sum of the interior angles is 180 de-
grees” is a true statement. Let D be the set of all plane triangles. The universal
statement is formulated using the universal quantifier as follows :

d/\D (The sum of the interior angles in d is 180 degrees)
<
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The statement "Every natural number x has a natural number y as its successor”
is synonymous with the statement "For every natural number x there is a natural
number y which is a successor of x.” Let N be the set of natural numbers. Then
the statement is formulated using the universal quantifier and the existential quan-
tifier as follows :

A 'V  (yis successor of x)
XEN yEN

The statement "For two points in the plane there is a line on which both points lie”
is synonymous with the statement "For two points x, y in the plane there is a line
g which contains x and contains y”. Let P be the set of all points in the plane, and
let G be the set of all lines in the plane. The statement is formulated using two
universal quantifiers and an existential quantifier as follows :

A AV ((gcontains x) A (g contains y))
xEP yeP geG

Expression of predicate logic : The elements of predicate logic are constants,
variables, operators, quantifiers and the technical characters (,). A sequence of
elements is called an expression of predicate logic if it is formed according to the
following rules :

(1) Every statement constant, every statement variable and every n-ary predi-
cate with variables or constants for n subjects is an expression.

(2) If a,b are expressions, then (—a), (a A b), (a v b), (a=Db) and (a < b) are
also expressions.

(3) If a is an expression and x is a variable, then (/X\ a) and (\X/ a) are also
expressions.

(4) Only the sequences of elements formed according to rules (1) to (3) are
expressions.

To avoid parentheses in expressions of predicate logic, a ranking of operators is
defined as in propositional logic. An expression formed according to rule (1) is said
to be atomic. A variable x in an expression is said to be free if it is not subject to
a quantifier /\ or V Otherwise, the variable is said to be bound. An expression
without free vanables is a statement of predicate logic. An expression with at least
one free variable is a formula of predicate logic.

Interpretation : Every expression which is a statement of predicate logic is either
true or false. The truth value depends on the meaning assigned to the subjects and
predicates for a specific reference set. Such an assignment is called an interpreta-
tionsStatementsof,predicate logic,withidentical formal structure can take different
truth values under different interpretations.
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Example 3 : Interpretation of expressions

Let N be the set of natural numbers. In a first interpretation, let the binary predicate
a(x, y) be assigned the meaning "x has the successor y”. Since every natural num-

ber has a successor in N, the statement /\N VN a(x, y) of predicate logic is true.
XEN y€E

In a second interpretation, let the binary predicate a(x, y) be assigned the meaning
”x has the predecessor y”. Since the natural number 0 has no predecessor in N,
the statement AV a(x,y) of predicate logic is false.

XxEN yEN

Logically valid, consistent and inconsistent expressions : The expressions
of predicate logic are classified with respect to their interpretation and their truth
value as follows :

(1) An expression of predicate logic which is true for every interpretation is said
to be logically valid.

(2) An expression of predicate logic which is true for at least one interpretation
is said to be logically consistent.

(3) Anexpression of predicate logic which is not true for any interpretation is said
to be logically inconsistent.

Replacing every statement variable in an expression of propositional logic by an
arbitrary expression of predicate logic yields a corresponding expression of predi-
cate logic. If the expression of propositional logic is logically valid, consistent or
inconsistent, then a corresponding expression of predicate logic is also logically
valid, consistent or inconsistent. A logically valid expression of predicate logic
derived from a logically valid expression of propositional logic is called a tautology
of predicate logic.

Unlike in propositional logic, the logical validity of an arbitrary given expression of
predicate logic cannot always be decided in a finite number of steps (Church’s
Undecidability Theorem).

Example 4 : Tautology of predicate logic

The expression —(—a) < a of propositional logic is a tautology. If the statement
variable a is replaced by the expression /X\ A a(x,y) of predicate logic, the corre-
sponding expression is a tautology of predicate logic :

(= A A axy) e A A aky)
X y X y

Logical equivalence for quantified expressions : A logically valid expression
of predicate logic of the form a < b (a is equivalent to b) is called a logical equiva-
lence. In,addition,to,the logical.equivalences which are tautologies of predicate
logic, there are further logical equivalences for quantified expressions :
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relabeling Nax) <« Aafy)
x y
Vakx) <« Aa(y)
y
negation = Aakx) < V -a

double negation - A =-ax) & Va
X

-V -ax) < Aa

con-/disjunction A (a(x) A b(x)) <

A
Vi@ vbx) < Vax) v Vbx

A a(x,y)
V a(x,y)

commutation Na(xy) <
y

A A
X y
V Vaixy < V
Xy y

The following logical equivalences hold only if the variable x is not free in the
expression a :

Na = a Vaea
N (anrbx) < anr Abx) V(avbx) < av Vb(x
N(@vbx) < av Abx) V(anabx) < anrVbx

Prenex normal form : A given expression of predicate logic may be transformed
into a logically equivalent expression using logical equivalences. An expression
may be brought into prenex normal form using such transformations.

An expression of predicate logic is said to be in prenex form if it is either free of
quantifiers or consists of a sequence of quantifiers followed by an expression with-
out quantifiers. A prenex form is said to be in prenex normal form if the expression
without quantifiers is a normal form of propositional logic. A prenex normal form
is said to be disjunctive or conjunctive if the expression without quantifiers is a dis-
junctive or conjunctive normal form of propositional logic, respectively.

Every expression of predicate logic has an equivalent prenex disjunctive normal
form and an equivalent prenex conjunctive normal form. The transformation of an
expression.of predicate.logic.into.one.of these normal forms is performed using
the logical equivalences of propositional and predicate logic.
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Example 5 : Prenex normal forms

The following expression of predicate logic is brought into prenex normal form,
using logical equivalences of propositional and predicate logic in each step :

Vax) = Vb < (rule of elimination)
-Vax v Vb(x <« (rule of negation)
X X

A-ax) v Vbx) < (relabeling rule)
X

X

A-ax) v Vb(y) <« (prenex arrangement)
x y

A V (—a(x) v b(y)) prenex normal form
Xy

In the first step, the operator = is eliminated using the rule of elimination of propo-
sitional logic. In the second step, the rule of negation of predicate logic is applied
to the first subexpression. In the third step, the relabeling rule of predicate logic is
applied to the second subexpression to replace x by y. In the fourth step, the
quantifiers /X\ and \y/ are brought to the front to obtain a prenex form of the
expression beginning with a sequence of quantifiers. After the fourth step, the
expression is in prenex normal form, since the expression (—a(x) v b(y)) following
the sequence of quantifiers is free of quantifiers and exhibits the normal form of
propositional logic. This normal form is conjunctive.

Logical implication for quantified expressions : A logically valid expression
of predicate logic of the form a = b (a implies b) is called a logical implication. Be-
sides the logical implications which are tautologies of predicate logic, there are log-
ical implications for quantified expressions in a reference set M with x,y,t eM :

elementary implication Nalx) = aly)
X

Vap = aw)

conjunction V@ax) abx) = Vax r Vb(x
disjunction AN@x) vbx) <= Aax v Abx)
subjunction A@x)=bx) = (Aakx)= Ab(x)

N (a(x) =b(x) = ( \x/a(X) = \x/ b(x))

X

commutation V Aa(xy) = A Vaxy)
X y y x
Each logical equivalence a <> b yields the logical implications a= b and a <= b.

The. logical.implications.of.propesitional.and predicate logic are used to deduce
new true statements from given true statements.
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1.5 PROOFS AND AXIOMS

Introduction : A field of knowledge is composed of definitions and theorems. A
theorem is a statement which is proved to be true. There are different methods of
proof, based on different logical rules of inference. The forms of direct and indirect
proof and proof by induction are treated.

In some areas of mathematics, proofs may be formalized by introducing certain
statements as axioms and certain rules of inference as rules of derivation, thereby
allowing the theorems of the field to be formally derived. Which theorems can be
derived depends on the axioms and rules of derivation introduced. However, ac-
cording to Godel's Incompleteness Theorem not every theorem of a theory can be
formally derived on the basis of an axiomatization. The fundamental concepts of
axiomatic systems are briefly explained.

Theorem : Avalid statement concerning a mathematical fact is called a theorem.
Theorems are often formulated as a logical implication a = b. The statement a is
called the hypothesis (premise), the statement b is called the conclusion of the
theorem.

Proof : The deduction of the truth of a statement from the truth of other state-

ments is called a proof. By virtue of the proof, the statement becomes a theorem.

Logical rules of inference are applied in proofs. A finite sequence of logical infer-

ences is a proof if the following conditions are satisfied :

(1) Each inference in the sequence follows logically from the hypotheses of the
theorem, theorems that have already been proved, substitution and replace-
ment rules and rules of logic.

(2) The last inference in the sequence yields the conclusion of the theorem.

(3) The conclusion of the theorem is not used within the sequence.

Direct proof : For the hypothesis a and the conclusion b, the implication a = b
is shown to be true. Then if a is true, b is also true. This follows from the logical
implication

(a=b)jra=0>b

Example 1 : Extended Pythagorean Theorem

Hypothesis : Let a right triangle with hypotenuse ¢ and adjacent sides a, b be
given. The areas of the semicircles erected on the sides of the triangle are
designated by F,, F,, F..

Conclusion: F,+F, = F,
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Proof : The direct proof consists of the following steps :
(1) The Pythagorean Theorem holds for a right triangle :

a’®+b? = ¢?
(2) The areas F,, F, of the semicircles erected over the sides a, b are deter-
mined using the formula for the area of a circle :
F, = ma?/2 F, = m b2%/2
(8) From (2) and (1), the sum F, + F is obtained as
Fo+F, = ma?/2+n b?/2 = n(a2+b?) /2 = nc?/2
(4) The area F_ of the semicircle erected over the hypotenuse c is determined
using the formula for the area of a circle :
F, = mc?/2
(5) Comparison of (3) and (4) yields the conclusion :
F,+F, = F,

Indirect proof : For the hypothesis a and the conclusion b, the implication —b
= —a is shown to be true. Then if a is true, b is also true. This follows from the
logical implication of the direct proof by the contraposition principle, (a = b) <
(b= —a):

(mb=>—-a) A a=b
This method of proof may also be applied by assuming a to be true and showing
that the assumption —b implies the statement —a. This results in a contradiction
for the statement a. This contradiction shows that the assumption —b must have

been false, and hence that the conclusion b holds. There are further forms of indi-
rect proof, based on the following logical implications :

(-b=a) A —a=>b

(-b=2a) A (b= —-a) = b

Example 2 : Prime numbers

Definition : A natural number p > 1 is said to be prime if it is divisible only by 1 and
by itself.

Conclusion : There are infinitely many prime numbers.
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Proof : The indirect proof consists of the foliowing steps :

(1) The negation of the conclusion is assumed. There is only a finite number of
prime numbers p; <p, <...<p,.

(2) The number z is formed as the product of the n prime numbers, incremented
by 1:
Z = pyPoetPpt1

(3) From (1) and (2) it follows that z is not prime, since z is greater than the
greatest prime number.

(4) According to the factorization theorem, every natural number a > 1 which is
not prime is divisible by a prime number.

(5) From (2) and (4) it follows that z is a prime number, since, due to the
incrementation by 1, z is not divisible by any of the prime numbers

p1, pz,...,pn.

(6) The statements (3) and (5) form a contradiction; therefore the negated
conclusion (1) is false, and the conclusion is true.

Proof by induction : A statement S(n) which depends on a natural number n is
proved by (mathematical) induction. S(0) is proved as the induction hypothesis.
Then S(n) is deduced from S(n — 1) for an arbitrary number n > 0. Repeated ap-
plication of this direct proof yields the conclusion S(n) for every natural number n.

((S(n=1) = S(n)) A S(n—1)) = S(n)

Example 3 : Sums

Conclusion : The sum of the odd numbers from 1to 2n + 1 is (n + 1)2.

S(n) = i+1) = (n+1)2

I

Proof : The conclusion is proved by induction :

(1) Induction hypothesis: Forn =0, the statement is true, since the sum consists
only of the number 1 and is therefore equal to (0 +1)2 = 1

() Inference fromn—1ton: Forn>0, S(n) follows from S(n —1) :

I

@i+1) = i 25i+1)+2n+1 = n2+2n+1 = (n+1)2
i i=1
Thisresultisappliedforn=1;2;3; ; it follows that the conclusion S(n) is true
for every natural number.
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Sufficient and necessary conditions : If the conclusion b follows from the hy-
pothesis a, the implication a = b is true. In this case, a is called a sufficient condi-
tion for b, and b is called a necessary condition for a. If the equivalence a < b is
true, b is called a necessary and sufficient condition for a. These terms are moti-
vated as follows :

(1) Since the statements a and a = b are true, it follows from the definition of
the implication = that b is true. The truth of a is therefore sufficient for the
truth of b. The truth of a is, however, not necessary for the truth of b. If a is
false and b is true, the implication a = b remains true.

(2) Since the statement a => b is true, according to the truth table of the implica-
tion = the statement a can only be true if the statement b is true. The truth
of b is therefore a necessary condition that must be satisfied if a is to be true.
The truth of b is, however, not sufficient for the truth of a. If a is false and b
is true, the implication a = b remains true.

(3) Since the statement a < b is true, according to the truth table for the
equivalence a is true if and only if b is true. Therefore, b is a necessary and
sufficient condition for a.

Example 4 : Necessary and sufficient conditions

B B
A A

(

Let the circles A and B be concentric. Let the radius of A be less than the radius
of B. Let the position of a point P relative to the circles A and B be characterized
by the following statements :

a := "The point P lies inside circle A”
b:

"The point P lies inside circle B”

The implication a = b is true, since the point P always lies inside circle B if it lies
inside circle A. The following sufficient and necessary conditions hold for the
position of P :

(1) Ifthe point P lies inside circle A, then this is a sufficient condition for the point
P to lie inside circle B. It is, however, not a necessary condition. The point P
can lie inside circle B without lying inside circle A.
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(2) ThepointP can only lieinside circle Aif it lies inside circle B. Lying inside circle
B is therefore a necessary condition for lying inside circle A. Not every point
that lies inside circle B also lies inside circle A. The condition that the point
P lies inside circle B is therefore not a sufficient condition for it to lie inside
circle A.

(3) If the radii of the concentric circles A and B are equal, then the equivalence
a < b s true. That the point P lies inside circle B is necessary and sufficient
for the point P to lie inside circle A.

Axiomatization : Many areas of mathematics are axiomatized. To axiomatize a
field, certain valid statements are chosen and designated as axioms. From these
axioms, the theorems of the field are formally derived according to rules of
inference. A set of valid statements in a field may be axiomatized in different ways.
A valid statement which is an axiom in one axiomatization may be a derivable
theorem in another axiomatization.

Axiomatic system : A statement that is assumed to be true in the course of an
axiomatization is called an axiom. A set of axioms from which valid statements can
be derived using formal rules of inference is called an axiomatic system. An axiom-
atic system must be consistent (free of contradictions) and should be independent :

(1) Consistency : An axiomatic system is said to be consistent (free of contradic-
tions) if it is not possible to derive from it both a statement a and the statement
—-a.

(2) Independence : An axiomatic system is said to be independent if none of its
axioms can be derived from the remaining axioms.

Completeness of an axiomatic system : An axiomatic system with its formal
rules of inference is said to be complete for a field of mathematics if all theorems
of the field can be formally derived. This means that the set of valid statements of
the field and the set of statements derivable from the axiomatic system are
identical.

According to Gédel's Completeness Theorem, a complete axiomatic system with
formal rules of inference may be specified for propositional logic and first-order
predicate logic, so that all theorems of propositional logic and first-order predicate
logic are derivable. According to Godel’s Incompleteness Theorem, complete axi-
omatic systems with formal rules of inference cannot be specified for higher-order
predicate logic.
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2 SET THEORY

21 SETS

Introduction : The set is a fundamental concept of mathematics and computer
science. Many problems in engineering deal with operations on sets. The concept
of a set, the rules for forming sets (algebra of sets), the relationships between ele-
ments of sets (relations, mappings) and the corresponding classification of mathe-
matics according to algebraic, ordinal and topological structures are treated in the
following.

Formation of sets : A set M is specified either by enumerating the designations
of the elements or by describing the properties of the elements. The order of enu-
meration of the elements is irrelevant. If two elements in the enumeration bear the
same designation, they represent the same element. This element is contained in
the set only once. The set without elements is called the empty set and is desig-
nated by 0.

M= {a,b,c} set M consists of the elements a, b, ¢

M= {xIE(X)} set M contains every element for which
the logical expression E (x) is true

f :={xIx =x} emptyset

The membership of an element a in a set M is represented using the symbols €
and ¢ :

ae M aisanelement of M
agM a is not an element of M

Quantifier : There are statements which are true for certain elements of a set M
and false for other elements of M. Such relationships between statements and ele-
ments are represented using the universal quantifier A and the existential quan-
tifier V . Often the set M is not explicitly specified if it is self-evident.

universal quantifier : /\M (-..) for every x in the set M ... holds
Xe

existential quantifier : VM (-..) thereis an xin the set M for which ... holds
Xe

Equal sets : Two sets A and B are said to be equal if they contain the same ele-
ments. If the sets A and B are equal, they contain the same elements. The state-
ment.A.=.B. (A eguals B).possesses.either the statement value true or the state-
ment value false.
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(A =B) & /X\(xeA¢>xeB)

A =B sets A and B are equal
A = B sets A and B are not equal

Subset : A set A is called a subset of a set B if every element of A is also an
element of B. If the set B contains at least one element not contained in A, then
A is called a proper subset of B.

(AcB) = /X\(xeA=>xeB)
(AcB) :» (AcB) A =(A=B)

A cCc B AisasubsetofB
A c B Aisaproper subset of B

In addition to the symbols C (contained in) and c (properly contained in), the
symbols 2 (includes) and > (properly includes) are also used.

B2 A setBincludes set A
B o A setB properly includes A

System of sets : A set whose elements are themselves sets is called a system
of sets. A system of sets must not contain any elements which are not sets. The
number of elements in different sets of a system of sets may be different.

Power set : From a given set M of n elements, 2" subsets can be formed, includ-
ing @ and M. The set of all subsets of M, including @ and M, is called the power set
of M and is designated by P(M). The set M is called the reference set of the power
set P(M).

Example 1 : Sets
enumeration of a set :
description of a set

= {a,b,c,d,..., Xy, 2z}
{x | x is an uppercase letter}
{a,b,c} B ={b,c,a}
= {a,d,y, z}
= {{a,c,e},{1,3,5 9} {a, B}}
= {0, {a}, {b}, {a, b}

equal sets A = B
subsetA ¢ M
system of sets
power set of {a, b}

T ?m>»>ZZ
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Family of elements : Designating the elements of a set by different names is
inconvenient for sets with a large number of elements. The elements of a set X
are therefore often designated by x;, X5, X3,... . The common designation by the
lowercase letter x symbolizes membership in the set X, while the indexi € {1, 2,
3,...} identifies the element. The elements x; are called a family of elements. The
family of elements is designated by {x;}.

X={x | iel1={1,23,..}
Family of sets : Designating the sets of a system M of sets by different names

is often inconvenient. A family of sets is therefore formed which contains the sets
A; as elements. Each of the sets A; may be a family of elements { a,

im -
M={A | iel={123.)
{1,2,3,..1

A={a, | me M

Example 2 : Families of elements and sets
{by, b4, bs, b;} = B = {b lie {1,457}

{a} A, = {a, b} A; = {b,c}
{A lie {1,238}

family of elements : B

family of sets DA,
M
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22 ALGEBRA OF SETS

Operations on sets : A rule which, for two given sets, yields exactly one set as
a result is called an operation on sets. The rule for an operation is defined using
the operators —, A, vV and @ of propositional logic and the set membership €
of the elements. Each operation is designated by a symbol. For the sets A and B,
the following operations are defined :

intersection : ANB = {xIxeA A xeB}
union : AUB = {xIxeA v xeB}
difference : A-B = {xIxeA A x¢B}

symmetric difference : A®B = {xlIxeA & xeB}

Set diagram : A set is schematically represented by a region in a plane. Every
element of the set is represented by a point in this region. The following set
diagrams represent the operations on sets.

/ Fo N / e \
"\_%___ _/\(\_ _/ \M%J / ___,/f
intersection ANB union AUB

‘< T
e ) il o
- N

difference A—-B symmetric difference A©B

Example 1 : Operations on sets

Applying the operations tothe sets A = {a,c¢,d} and B = {c, x, z} leads to the
following results :

intersection : ANB = {c}

union : AUB = ({acdxz}
difference : A-B = {ad}
difference ; B-—A =[xz}

sym. difference : A®B = {adxz}
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Complement of a set : Let the set A be a subset of the set M. The differegce
M — A is called the complement of A with respect to M and is designated by A.

complement : A:=M-A
operations ANA =29 AUA =M

Generalized operations : The set of all elements contained in each set A, of an

indexed system of sets is called the generalized intersection N A, of the system
of sets. The set of all elements contained in at least one set A, of an indexed system
of sets is called the generalized union U A, of the system of sets.
N A := A -
A {x] AN (xeA)}

ier !

U A

1=

x|V (xeA))

Disjoint sets : The sets A and B are said to be disjoint if they have no elements
in common. A system of sets is said to be disjoint if its elements A, are pairwise
disjoint.

disjuncton : ANB = ¢
Partition : A subdivision of a set M into a disjoint system of subsets T, is called

a partition of M. Every element of M is contained in exactly one of these subsets,
none of the subsets is empty, and the union of the subsets is the set M.

M= T,UT,U.UT,
AN(Gi=m v T,NT, =0)
i m

Example 2 : Disjoint systems of sets

indexed sets : A, = {a, b} A, ={b,c,d} Az;={de,f}
disjoint system of sets : M = {Ay, A3}
non-disjoint system  : M = {A,, A, A}

Set-valued expressions : Set-valued expressions are the fundamental objects
of the algebra of sets. A sequence of symbols is called a set-valued expression if
it is formed according to the following syntactic rules :

(1) Every set value is an expression.

(2) If A and B are expressions, then A, (A N B), (AU B) and (A — B) are
also expressions.

(3) Only sequences of symbols formed by rules (1) and (2) are expressions.
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Valuation of a set-valued expression : A set value is either a set constant or
a set variable. A set constant is the representation of a specific set, enclosed in
curly brackets. A set variable is a character string which is replaced by a set
constant. A valuation for an expression is obtained by assigning a set constant to
each set variable in the expression. The operations contained in the expression
are performed for this valuation. The resulting value of the expression is a set.

Rules of calculation : If the set-valued expressions Y and Z are equal for all
valuations, the logical expression Y =Z is called a rule of calculation. The rules
of calculation follow from the definitions of the operations N, U and — together with
the truth tables of the operators —, A and v . The following expressions involving
the set variables A, B and C are rules of calculation of the algebra of sets.

idempotency ANA=A AUA = A

commutativity ANB=BNA AUB = BUA
associativity (ANB)NC = AnBNC) (AuB)UC = AuBUC)
distributivity AN(BUC)=(ANB)UMANC)|AUBNC)=(AUB) N(AUC)
absorption ANAUB)= A AUANB)= A

If A, B and C are subsets of M and all complements are formed with respect to M,
the following expressions are also rules of calculation.

identity ANM = A AUD = A

invariance ANYg = 0 AUM M

reflexivity ACA A DA

extremality pCA M DA

contraction ANB C A AUuB 2 A

monotonicity ACB= ANCcBNC A2B = AuC2BUC
complementarity ANA =0 AUA =M

double complement A=A A=A

antitonicity ACB = ADB ADB = ACB

De Morgan (AnB)= AUB (AUB) = ANB
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2.3 RELATIONS

Introduction : There may be relationships between the elements of sets. The
order in which the sets are considered may be relevant in these relationships. Such
relationships are treated in the following, using the concepts of ordered pair, direct
product, relation and class.

Ordered pair : Inaset, the order of elements is irrelevant, sothat{a,b}={b,a}.
Two elements a and b whose order is relevant are called an ordered pair. An or-
dered pair is enclosed in parentheses. The elements a and b may be contained
in different sets. Two ordered pairs (a,b) and (c,d) are equal ifand only ifa =c and
b=d.

ordered pair: (a, b) := {{a}, {a, b}}
a first component of the ordered pair (a, b)
b second component of the ordered pair (a, b)

equal pairs : (a,b) = (c,d) <« (a=c) A (b=d)

Cartesian product : Let the sets A and B be given. The set of all ordered pairs
(a,b) that can be formed using elements acA and be B is called the cartesian
product (direct product) of the sets A and B. The cartesian product is designated
by AxB (A times B).

AxB := {(a,b)lacA A beB}

Relation : Let the sets A and B be given, together with an operation on the
elements ac A and be B whose value is a logical constant. The value of the
operation for the ordered pair (a, b) in the product A x B is designated by aRb
(a is related to b) and is either true or false.

The subset R of pairs (a, b) for which aRb is true is called a relation on A and B.
Thus the relation is a set containing the pairs of elements for which the relationship
specified by the operation holds. The order of the elements a and b inthe opera-
tion is relevant to the result of the operation.

R = {(a,b) € AxB | aRb}

Relationin M : The subset R C M x M of the cartesian product of a set with itself
for which aRb is true is called a relation in M. The relationships between the state-
ment values aRb and bRa of the pairs (a, b) and (b, a) determine the properties
of the relation. These properties are defined in the following for a, b, c € M.

R:= {(a,b) € MxM | aRb}
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R is reflexive

R is antireflexive
R is symmetric

R is asymmetric

R is antisymmetric
R is linear

R is connex

R is transitive

K

A (aRa)

a

A (—aRa)

a

A A (aRb = bRa)

a b

A A (@aRb = —bRa)

a b

A A (aRb AbRa = a=b)
a b

A /b\ (aRb v bRa)

A /b\ (@a=b = aRb v bRa)
a

»>

Q A (aRb A bRc = aRq)

c

Example 1 : The strict order relation for natural numbers

2.3 Relations

The strict order relation a <b inthe set N of natural numbers is antireflexive, asym-
metric, connex and transitive.

Totality of a relation on A and B : The subset RC A x B for which aRb is true
is a relation on the sets A and B. The subset of A for which there exists b e B such
that aRb is true is called the domain of R. The subset of B for which there exists
a e A such that aRb is true is called the codomain of R. The relation is said to be
left-total if its domain is A. The relation is said to be right-total if its range is B.
A relation which is left- and right-total is said to be bitotal.

R is left-total e N \b/ (aRb)
a

Ris right-total < /b\ V (aRb)
a

R is bitotal <> Ris left-total A R is right-total

Uniqueness of a relation on A and B : A relation on A and B is said to be
left-unique if the statements aRb and cRb are true only for a =c. The relation
is said to be right-unique if the statements aRb and aRc are true only for b=c.
A relation which is left-unique and right-unique is said to be bi-unique.

Ris left-unique := A /b\ N (@aRb AcRb = a=¢)
a (o]

R is right-unique = A /b\ A (@aRb AaRc = b=¢)
a C

R is bi-unique  := Ris left-unique A R is right-unique
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Relational diagram : A relational diagram shows three sets : the sets A and B
as well as the relation R. The elements of A and B are represented by different
symbols, for instance empty and filled circles. The elements of R are represented
by line segments. For R C A x B the elements a € A and b € B for which aRb is
true are joined by line segments. The following relational diagrams illustrate the
uniqueness of R.

A B A B A B A B
R general R left-unique R right-unique R bi-unique
m : n relationship 1 : n relationship m : 1 relationship 1 : 1 relationship

n-ary relation : A relation on two sets is called a binary relation. The concept of
a relation is extended to describe relationships among n sets. An arrangement of
n elements whose order is relevant is called an n-tuple. The n-tuple is defined
recursively using the ordered pair.

(Xq4y XgyeenXy) 1= ((Xq, XpyeesXp_q)s Xp)

The set of all n-tuples which can be formed using elements x; of the sets M, with
i€ {1,2,...,n}is called the n-ary (n-fold) product M, x M, x... x M. If the sets M,
are equal, the n-ary product is written as M".

Let an operation on the n-tuple (x;, X, ...,X,) be defined whose result is a logical
constant, designated by Rxx,...x,. The n-ary (n-place) relation RC M, x...x M,
is the subset of n-tuples (x4, X,,...,X;) for which Rx, x,...x is true.

R:= {(xy, Xp.sXy) € MyxMyx..xM | RxyXy...x }
Example2 : The naturalnumbers a and b and theirsum ¢ = a + b form a ternary
(3-place) relation on N3 :

R = {(a,b,c)e N® | ¢ = a+b}
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2.4 TYPES OF RELATIONS

Every relation is a subset of a direct product. Relations often have additional prop-
erties. Relations with common properties belong to a type of relations. Some types
of relations are defined in the following. They lead to the concept of a class, which
is of central importance in the formation of models.

Identity relation : The set of all ordered pairs (a, a) in the product A x A is called
the identity relation I, inthe set A.

I, := {(@a)l acA}

Dual relation : The set R~ is called the dual (inverse) relation of the relation R
if the order of the elements in the ordered pairs (a, b) of R is exchanged in R~".

R := {(b,a) | (a,b)eR}

Composition : Let a relation R on the sets A and B and a relation S on the sets
B and C be given. The set of ordered pairs (a, ¢) € A x C for which there is a com-
mon element in B is called the composition of R and S. The order of R and S is
relevant, as b is the second element of R and the first element of S. The composi-
tion is designated by SoR.

SoR := {(a,c)e AxC | V (aRb A bSc)}
beB

Example 1 : Dual relation and composition

Let the sets A={1, 2,5} and B={1, 3, 4} be given. Let the relation R be the
setof all pairs (a, b) with ac A and b e B forwhich a < b istrue. The compaosition
of this relation with its dual relation does not yield an identity!

product : AxB = {(1,1),(1,3), (1,4), 2,1), (2,3), (2,4), (5,1), (5,3), (5,4)}
relation R {(1,3), (1,4), (2,3), (2,4)}
dual relaton : R {(3,1), (4,1), (3,2), (4,2)}
composition : RoR™ = {(3,3), (3,4), (4,3), (4.4)}

I
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Equivalence relation : A relation EC M xM is called an equivalence relation
inthe set M if it is reflexive, symmetric and transitive. The elements x and y of the
set M are said to be equivalent if the set E contains the pair (x, y) ; this relationship
is designated by x~y or xEy.

E is reflexive DX ~X
Eissymmetric : x~y =y ~x
E is transitive D X~y A y~2Z = X~2

Equivalence class : A subset of a set M is called an equivalence class in M if
the elements of the subset are pairwise equivalent. An equivalence class is
designated by choosing an arbitrary element a of the class and enclosing it in
square brackets [a]. The selected element a is called a representative of its class.

[a] = {xeM | (a,x)eE}

Partitioning by equivalence : The equivalence classes in a set M for a given
equivalence relation E form a partition of M :

(1) Every element x of the set M is contained in at least one equivalence class,
since (x, x) is an element of the reflexive relation E.

(2) None of the equivalence classes [x] is empty, since (x, x) € E and hence at
least x itself is an element of [x].

(3) Every element z of the set M is contained in exactly one equivalence class.
Infact, if z is an element of the classes [x] and [y], then since E is symmetric
and transitive z~x and z~y imply x~z and x~y; hence [x]=[y].

Quotient set : The set of equivalence classes of a set M for an equivalence
relation E is called a quotient set and is designated by M/E (M modulo E). A
subset R C M is called a system of representatives of the quotient set M/E if it
contains exactly one representative from each class of M/E.

M/E := {[x] | xeM}

Example 2 : Parallel lines

Let a set M of lines in a plane be given. Let the lines be parallel either to the x-axis
or to the y-axis. Let two lines be equivalent if they are parallel. The relation Line
a is parallel to line b” has the properties of an equivalence relation :

Reflexivity : Every line is paraliel to itself.
Symmetry : Ifline a is parallel to line b, then b is also parallel to a.
Transitivity .l line.a.is.parallel.to. line b and line b is parallel to line c,

then a is also parallel to c.
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The equivalence relation is derived from the abstraction “direction of a line”. It
partitions the set M into two equivalence classes. One class contains all lines which
are parallel to the x-axis. The other class contains all lines which are parallel to the
y-axis. A system of representatives contains one line parallel to the x-axis and one
line parallel to the y-axis.

Closure : A relation H C AxB is called a closure of the relation R € AxB if
elements of the set R enter into the rule for forming the set H. The closure H of a
relation R is designated by <R>_. The symbol x stands for the properties of the
relation R which enter into the rule for H.

Symmetric closure : The relation R ¢ MxM in the set M is generally not
symmetric. The symmetric closure <R> of R is formed by letting every element
(x, y)€ R and its dual element (y, x) be contained in the closure. The symmetric
closure <R> is an extension of R.

<R>,:= {(x,y) | (x,y) e R v (y,x) € R}

Connection : Considertherelation R ¢ M x Min the set M. An n-tuple (x4, X5,...,
X,) € M"is called a connection of the elements a and b by R in M if all ordered
pairs (x; X;,;) are contained in the relation R and x, = &, X, = b. The number
n —1 of ordered pairs is called the iength of the connection. For given elements
a,b in M, there may be several connections with equal or different lengths. The
statement "The elements a and b are connected by R” is designated by aVgb.
Vg = {(Xg, Xo X)) | ie{1“/.}n_1}((xi, Xi+1) € R)}
aVgb = V.  (xy=a A x,=Db)
Transitive closure : The relation R € M xM in the set M contains only binary
connections. The transitive closure <R>, of R contains all ordered pairs (a, b) € M2
which are connected by R. The transitive closure <R>, is an extension of R.

<R>, := {(a,b) e M2 | aVgb}
Reflexive transitive closure : If a relation R € M xM is not reflexive, then its

transitive closure <R>, is not reflexive either. The reflexive transitive closure <R>
of R is formed by adding all ordered pairs (a, a)e M? to the transitive closure.

<R>, := {(a,b)eM? | (a,b)e <R>, v a=b}

Reflexive symmetric transitive closure : The reflexive transitive closure of the
symmetric closure of arelation R C M x M is called the reflexive symmetric transi-
tive closure <R> ; of R. This closure is an equivalence relation and can therefore
be used to classify the elements of M.

<R> = {(a,b) e M? | (a,b) € <<R>>; v a=b}
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Example 3 : Component problems

Let M be the set of parts and partially assembled units which occur in the assembly
of a steel construction. These parts and partial assemblies are called components
of the assembly. The statement "Component x, is directly necessary for the as-
sembly of component x,” leads to the component relation R C M x M. Let the set
R be given. The value of the statement "Component x, is directly or indirectly
needed for the assembly of component x,” is to be determined. The statement is
true if (x4,X,) is an element of the transitive closure <R>, of the component rela-
tion.

Example 4 : Train connections

Let M be a set of railway stations. The statement ”A train goes non-stop from
station x, to station x,” leads to a traffic relation R € M x M. Let the set R be
given. The value of the statement "There is a train connection from station x, to
station x,” is to be determined. This statement is true if (x,,X,) is an element of
the transitive closure <R>, of the traffic relation.
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2.5 MAPPINGS

introduction : Relations generally do not establish unique relationships be-
tween the elements of sets. However, in many applications it is convenient to
assign to each element of a set A exactly one element of a set Z. The same element
of Z may be assigned to different elements of A. Relations of this type are called
mappings. If A and Z are sets of numbers, the term "function” is often used instead
of the term "mapping”.

Mapping : A relation f C AxZ is called a mapping if it is left-total and right-
unique. The following notation is used :

f: A>Z f isamapping fromAtoZ
A domain of f
Y4 target of f

Image of an element : [f the mapping f assigns the element z € Z to the ele-
ment a€ A, then z is called the image of a under the mapping f. The element a
is called a preimage (inverse image) of z. The following notation is used :

f.:a—z or f(a) = z
Arrow diagram : Mappings are depicted using arrow diagrams. Every element

of the domain is the starting point of an arrow. The arrow points to the image in the
target.

a b c d
domain A : O O O O
mappingf: A—=Z

targetZ S g o
fla) f(b) f(c)= f(d)

Fiber : Every element a of the domain A of a mapping f: A — Z has a unique
image f(a) in Z. An element z of the target Z may have zero, one or several pre-
images. The set of all preimages of an element z in the target is called the fiber
of f over z and is designated by f7(2).

fz) := {xeM If(x) =z}
domain A : O O O O fierf'(z)

target Z O & & o image z
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Image of a subset : Let S be a subset of the domain A. The set of images of the
elements of S under the mapping f: A — Z is called the image of the subset S
and is designated by (S).

f(S) := {zeZ | z=f(x) A xe8}
domain A : O O O O subsetS
targetZ (5 é) 8 o image f(S)

Preimage of a subset : Let U be a subset of the target Z. The union of the fibers
of the elements of U under the mapping f: A — Z is called the preimage of the
subset U and is designated by ~'(U).

domain A : ¢} O O preimage (V)
/

targetZ 6 g’ O  subsetU
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26 TYPES OF MAPPINGS

Introduction : All mappings are left-total and right-unique relations. Mappings
often have additional properties. Mappings with common additional properties be-
long to a type of mappings. Types of mappings are often defined according to the
effect of successive mappings. Some types of mappings are described in the
following.

Injective mapping : A mapping f: A — Z is said to be injective (an injection)
if two different elements a = b of the set A always possess two different images
f(a) = f(b). An injection is a left-total, bi-unique relation. From f(a) = f(b) it follows
that a =b.

o O O A O O O A
f f

O & & o z O & o o z

injection not an injection

Surjective mapping : Amappingf : A—Z issaidto be surjective (a surjection)
if each element of the target Z is the image of at least one element of A. A surjection
is a bitotal, right-unique relation. An element z € Z may be the image of more than
one elementin A.

O O O o A O O O O A
f f

O & & z g o & z

surjection not a surjection

Bijective mapping : A mapping f: A—Z is said to be bijective (a bijection) if
every element of Z is the image of exactly one element of A. A bijection is a bitotal,
bi-unique relation. The number of elements in A and Z is the same.

o O O A o o O A

f f
S & & z S & o z
bijection not a bijection

Permutation : Abijective mapping p: A — A of asettoitselfis called a permuta-
tion. The permutations of the set {a, b, ¢} are the following sets:

{(a,a), (b/b), (c,0)} P, = {(aa), (bo), (c.b)}
{(a,), (b,a), (c.b)} Ps = {(ab), (ba), (c.0)}
{(a’b)v (b,C), (C,a)} Pe {(a,C), (b!b)! (Cva)}

T T
N -
I il

)
()
I
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Identity mapping : A permutation 1,: A— A is called an identity mapping if
each element ac A isits own image 1, (a) :

1,: A=A with 1,(@) = a

Equal mappings : The mappings f:A—Z and g: A — Z are said to be equal
if the images f(a) and g(a) are equal for every element acA :

f=9 = A (@ =g@)

acA

Constant mapping : The mapping f: A — Z is called a constant mapping to the
value c if all elements of the set A have the same image ¢ inthe set Z :

f: A= Zisconstant (= V A (f(a) = ¢)
CEZ aEA

Composition : A mapping g of: A — C is called the composition of the
mappings f and g if first the mapping f: A — B is applied and then the mapping
g: B— C is applied. For every element ac A, first the image b =f(a) is deter-
mined. For the element b e B, the image ¢ =g(b) in C is then determined. Com-
position of mappings is associative, but generally not commutative.

gof: A—=C with c =g(f(a)
ho(gof) = (hog)of
Commutative diagram : The relationships between the mappings in a composi-

tion are represented in arrow diagrams. A diagram of mappings is said to be com-
mutative if all compositions with the same domain and target are equal.

Example 1 : Commutative diagram

Applying the mapping f,:B — C after the mapping f, : A — B and applying the
mapping f,: D — C after the mapping f;: A — D leads to the same mapping.
The mapping f5: D — E and the composition of the mapping f;: C — E with the
mapping f,: D — C also coincide.

fhofy = faofy

fgo f, = f5
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Establishing the type of amapping : A mappingf: A — Zis injective if and only
if there is a mapping g : Z — A such that the composition gof is the identity map-
ping 1,. The mapping f is surjective if and only if there is a mapping g : Z — A such
that the composition fog is the identity mapping 1. If f is injective and surjective,
then f is bijective.

f: A>Z isinjectve <« V(g:Z—>A A gof=1,)
g

f: A—>Z issurjecive < V (g:Z—A A fog

17)
9
f: A—Z isbijecve <« V(g:Z—=A A gof=1, Afog=1,)
g
Inverse mapping : For every bijective mapping f : A — Z there is an inverse

mapping f~': Z— A. From f(a) =z it follows that ~'(z) =a. |f a mapping f is
not bijective, it does not possess an inverse mapping.

A f V4 z 1 A
@&—® O—@
O—@
O—0® @
mapping inverse mapping

Example 2 : Composition of mappings and inverse mappings
Let the permutations f and g of a set {1, 2, 3, 4} be given :

f {(1,2), (2,3), (3,4), (4,1)}
g {(1,3), (24), (3,2), (4,1)}
The two mappings are bijective and possess the following inverses :
1 = {(1.4), 2,1),(3,2), (4,3)}
gl = {(1.4),(23),(31), (42)}

The compositions gof and fo g are different :

gf(1) = 9@ = 4 fig() = @) = 4
9f@) = 9@ = 2 fg@) = t@4) = 1
g(t@) = 9@ = 1 f@@®) = tR = 3
gt@) = 9(1) 3 fg@4) = f(1) = 2
gof = {(1.4),(2.2), (3,1), (4.3)}
fog = {(14).(21),(33), (4.2)}

The composition of f and ' is the identity mapping :
f_1 Of = f o f_1 — {(1’1), (272)1 (3’3)l (4’4)}
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Sequence : A mapping of elements from the set N of natural numbers to a set M
is called a sequence of elements from M. If an element of M is assigned to every
natural number, the sequence is said to be infinite. If a segment {1, 2,...,n} of N is
mapped to M, the sequence is said to be finite. If a sequence maps the natural
number n to the element a,, the sequence is designated by <a,>. The members
of a sequence are distinguished by their indices.

Example 3 : Sequence of characters

The character string "motor” may be viewed as a sequence of characters, namely
a mapping from the natural numbers {1, 2, 3, 4, 5} to the set of characters of the
lowercase alphabet.

subset of N

@\@ o ¥

@ - 0 0 : @ alphabet

Canonical mapping : The surjection from a set M to its quotient set M/E for a
given equivalence relation E is called a canonical mapping of M. The image of the
element ae M is the equivalence class [a].

k: M-=M/E with k(@) = [a]

Example 4 : Canonical mapping of marbles

Letaset M = {a, b, ¢, d} of marbles be given. Let the marbles a and d be white,
and let the marbles b and ¢ be black. The equivalence relation "of the same color”
partitions the set M into the color classes {a, d} and {b, c}. The colors a and ¢ are
chosen as representatives of the classes. The canonical mapping k: M — M/ color
maps the marbles to the color classes as follows :

k(@) = [a] k(b) = [c]
k(d) = [a] k(c) = [c]

Restriction of a mapping : A mapping g: S — B is called a restriction of the
mapping f: A — Bif Sis a subset of A and the images f(s) and g(s) of every element
s of S coincide. The restriction of f to the set S is designated by f | S (f restricted
to S).

flIS={seAlseS A f(s)=g(s)}
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Example 5 : Restriction of a surjective mapping f: A—B to S ={1,4}

O

@%)@ ®\@

o2 ©
@
mappingf: A — B mapping f1{1,4}: S—B

Continuation of a mapping : A mapping h: M — B is called a continuation of
the mapping f: A — B if f is the restriction of h to the set A.

h: M— B isacontinuationof f: A=-B :« f=hI|A

Projection of a product set : Let the index set of the cartesian product
M; x .. x My bel = {1,..,n}. Letthe index set K = {i,,...,i } be a subset of I, so
thati, e I and m < n. The surjection p, from the product M x ... x My to the prod-
uct M; x .. x M, "is called the projection of the product set M; x ... x M, with
respect to the index set K.

P: MyxMyx..xM, — Mi1><Mi2><...><Mi

Function : The concept of a function is defined differently in mathematics and
computer science. A mapping f : A — Z is called a mathematical function if the
elements of the sets A and Z are numbers. The set A is called the domain of the
function f. The set Z is called the target (codomain) of the function f. The mapping
rule f(a) is called the function term. The equation z = f(a) is called the functional
equation. The image of a given element x € A is called the function value f(x) for x.
The function value is thus a valuation of the function term.

Example 6 : Real function of one real variable

If the sets A and Z are subsets of the set R of real numbers, then f: A — Z is called
a real function of one real variable.

Functions of several variables : A mapping f: A — Zis called a mathematical
function of n variables if A CR" and Z C R™ are product sets. For m = 1, the
function f is called a scalar function. For m > 1, the function is called a vector
function.
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2.7 CARDINALITY AND COUNTABILITY

Introduction : The number of elements in a finite set is described by a natural
number. This concept cannot be extended directly to infinite sets (for instance to
the set of natural numbers). Infinite sets are collections which are never completed
by successively adding their elements, and which can therefore never be com-
pletely enumerated. The concept which corresponds to the number of elements
of a finite set for general (finite or infinite) sets is the cardinal number (cardinality)
of a set. Different kinds of infinite sets may possess different cardinal numbers.
Cardinal numbers and operations on cardinal numbers are treated in the following.

Equipotency : Two sets A and B are said to be equipotent (equinumerous, equi-
pollent) if there is a bijective mapping f: A — B. Equipotency is designated by
A ~ B (Ais equipotent with B). Due to the properties of bijective mappings, the
equipotency relation ~ is an equivalence relation :

~ is reflexive :  The mapping f: A — A with f(x) = x is bijective
A~A

~ is symmetric . f:A— Bisbijective = f':B — Alis bijective
A~B =B~A

~ s transitive : f:A—Bisbijective A ¢g:B — Cis bijective =

h:A—-C with h=gof is bijective
A~B AB~C = A~C

Example 1 : Equipotent sets

Thefinitesets A ={1,3,6,7,8}and B = {a, b, d,i, m} are equipotent, since there
is a bijective mapping f : A — B. The infinite sets N ={0,1,2,3,...} and Z=
{0,4,8,12,... }are also equipotent, since there is a bijective mapping g : N — Z with
f(x) = 4x. The sets A and N have different cardinality, since A is finite and hence
there is no bijective mapping from A to N.

Cardinal numbers : In a given system M = {A, B, ...} of sets, the quotient set
M/~ with respect to the equivalence relation ~ (equipotent) is formed. An ele-
ment of the quotient set M/~ is called a cardinal number (cardinality) of the given
system of sets. The canonical mapping card : M — M/~ assigns a cardinality
card (A) to each set AeM. The cardinality of A is alternatively designated by [A]
orby Al

Finite and infinite sets : Using the concept of cardinality, the concepts of a finite
set and an infinite set are defined without reference to the natural numbers. A set
M s said to be infinite if there is a proper subset A c M which is equipotent with M,
that is A~M or card (A) = card (M). Otherwise the set M is said to be finite. The
cardinalnumber.of afinite setissaidtobenatural, the cardinal number of an infinite
set is said to be transfinite.
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Example 2 : Finite and infinite sets

The set N in Example 1 is infinite, as it contains the equipotent proper subset Z.
By contrast, the sets 0, {a} and {3, 6, 7} are finite.

Operations on cardinal numbers : Operations in the set of cardinal numbers
of a given system of sets are defined as follows (without proof of compatibility) :

(1) The sum of the cardinal numbers of disjoint sets A and B is the cardinal
number of the union of A and B :
AnB= 0 = card(A)+ card (B) = card (AuB)

(2) The product of the cardinal numbers of the sets A and B is the cardinal
number of the cartesian product of Aand B :
card (A) - card (B) = card (Ax B)

(3) The power card (B) of a cardinal number card (A) is the cardinal number of
the set of all mappings from B to A :
card (A)°@d ®) = card (AB)
AB .= {flf:B—A}

Countable set : A set M is said to be countable if there is an injection f : M—N
from the set Mto the setN ={0, 1,2, ...} of natural numbers. Otherwise the set is
said to be uncountable. A countable set may be finite or infinite.

M is countable :< Y (f: M—=N is injective)

Properties of countable sets

(A1) The cartesian product N x N of the set N ={0, 1,2, ...} of natural numbers
is countable.

(A2) For every injection f: A— B with A =0 there is a surjection g : B— A such
thatgof=1,.

(A3) If the set A is countable and the mapping f : A - B is surjective, then the set
B is countable.

(A4) Every subset of a countable set is countable.

(A5) If the sets A and B are countable, then their cartesian product A x B is
countable.

(A6) A countable union of countable sets is countable.
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Proof : Properties of countable sets

(A1)

The product N X N is countable if the mapping f:N x N—N defined by
f(a,m) =(2a + 1)2™ — 1 is an injection. By definition, the mapping f contains
exactly one element keN for every element (a, m) eN X N. For every keN
there is an element (a,m) e N X N :

(a) Ifkiseven, thenm=0and2a=k.
(b) Ifkisodd,thenk +1=(2a + 1)2Mis even. Divide k + 1 by 2 until an odd
number v results. This determines m>0and 2a=v —1.

The numbers k, =(2a+1)2™ -1 and k, =(2b + 1)2" — 1 are equal if and
onlyifa=b A m=n:

ki =k, = (2a+1)2" = (2b+1)2" = a=b A m=n
Since every element ke N has a unique preimage (a, m) € N X N, the map-
ping f is injective. It is even bijective !

Let the injection f : A— B be given. To construct the surjection g: B— A, an
arbitrary element a A is chosen. Then g(y) for an arbitrary elementy € B
is defined as follows :

yef(A) : gly) = ()
y€f(A) : gly) =a

For an arbitrary element x € A, this yields :
y:=f(x) = gof(x) = gly) with yef(A)

(y)
= X

Let the surjective mapping f : A— B of a countable set A be given. Since A
is countable, there exists an injection g : A— N. For every element y B, let
Sy:={xeA| x ef'(y)}. The least element of the image g(Sy) is determined
and designated by my. Then the mapping h : B—N with h(y) = my is an
injection. Hence the set B is countable.

By definition, there is an injection g : A— N for every countable set A. For a
subset B C A, this induces a restricted injection gg: B—N. The set B is
countable by virtue of the injection gg.

For the countable sets A and B there are injections f: A—N with f(a) = n,
and g : B— N with f(b) = n,. Hence there is an injectionh: Ax B—N x N
with h(a,b) = (n4,n,). By property (A1), there is an injection i: N x N —N,
The composition ioch : A x B— N is an injection. Hence A x B is countable.
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(AB) Let the set A =) be countable. Let a countable set X; be defined for every
acA. Since A and every X, are countable, there are surjections f, : N — X,
and g : N — A. The mapping h is defined as follows :

hiNxN—J{Xa| acA} with h(n,k) ="ty (K

Thus h is surjective. Since N X N is countable, it follows from (A3) that the
union |J X, is countable.

Example 3 : Countability of the rational numbers

The set @ of rational numbers is countably infinite, since a bijective mapping
f : N — Q may be obtained using the following scheme. The vertices represent all
fractions § The natural numbers {0,1,2,...} are assigned as illustrated to the
vertices which correspond to the normal form of a rational number. The mapping
f:N—Q with f(n) =§ is bijective. Hence 0 and N are equipotent.

(n) natural number
Nedofofle

(6) (17

(@ O

O O

Example 4 : Uncountability of the open unit interval

The uncountability of the open unitinterval J = {xeR | 0 < x < 1} is proved indi-
rectly by proceeding from the assumption that J is countable. In this case there is
a bijective mapping f:N — J from the natural numbers n to the infinite decimal
fractions Xxp.

f(1) = x4 = 0.2zy Z5 243 z;, €{0,1,2,3,4,5,6,7,8,9}
f2) = x, = 0.z Zpy Zp3--
= X3 = 0.zg 23y Zg3...

f(3)

Anumbery = 0.b,b,b,... intheinterval J is formed such that every digit b, dif-
fers from the digit z; of the number x;. A possible choice is b; := 1 for z; =0 and
b, := 0 for z; = 0. Then y is not contained in the enumeration. This is a contradic-
tion; since-y-liesintheinterval-d-Heneethe open unitinterval is uncountable. The
method of proof used here is called the diagonal method.



Set Theory 55

Example 5 : Uncountability of the real numbers

The set R of real numbers is uncountable, since there is a bijective mapping from
the open unit interval J to the real numbers. The sets J and R are therefore
equipotent. In Example 4, the set J is shown to be uncountabie.

f:J>R with fx)= X=05

Xx(x — 1)
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28 STRUCTURES

Introduction : Mathematics comprises numerous fields, whose boundaries have
historical origins. The sets and relations of different fields have common proper-
ties. If mathematics is classified according to these properties, basic algebraic,
ordinal and topological structures become apparent. From these basic structures
and additional axioms, the mixed structures and the fields of mathematics are de-
rived. These connections are highly relevant to engineering, since the computer
provides only basic structures for the solution of engineering problems.

Unstructured set : A set is said to be unstructured if there are no relations de-
fined in it. All sets are initially unstructured when they are defined. In particular, the
order in which elements are enumerated in the definition of the set is irrelevant.

Domain : The ordered pair (M; R) ofaset M ={a,,...,a,} of elements and
a set R={R,,...,R,} of relations is called a domain (structured set). The
relations in R provide the set M with structure. The compatibility of the relations in
R is ensured by rules for the domain. The rules of compatibility determine the
theory of the domain.

Basic structures : A family of domains with similar relations is called a basic
structure. The following basic structures have emerged in mathematics :

algebraic structure  :  the relations describe relationships between elements
of the given sets

ordinal structure : the relations describe relationships between elements
and subsets of the given sets

topological structure : the relations describe relationships between subsets
of the given sets

Mixed structures : A domain equipped with relations from more than one basic
structure possesses a mixed structure (multiple structure). The compatibility of the
relations of a mixed structure is ensured by rules for the domain.

Derived structures : New domains are derived from a domain (M ; R) by equip-
ping the sets S ¢ M, M" and M/E derived from M with similar relations.

substructure : certain relations in R are restricted to subsets S C M.

product structure . acartesian product M, x ... x M of similarly structured
sets is equipped with the common structure R.

quotient structure amthe quotient,set M /E for an equivalence relation E is
equipped with the structure of M.
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Example 1 : Basic algebraic structure of the natural numbers

The domain (N ; +, « ) consists of the set N of natural numbers, together with the
relations addition (symbol +) and multiplication (symbol . ). The relations + and -
are made compatible by the distributive law.

a-(b+c)=(a-b) + (a-c)

Example 2 : Mixed structure of the rational numbers

The domain (0 ; +, +, =, d) is a mixed structure on the set Q of rational numbers.
The domain (Q ; +, - )isthe basic algebraic structure of the rational numbers. The
domain (Q ; <) isthe basic ordinal structure of the rational numbers. The domain
(@ ; d) with the distance metric d is the basic topological structure of the rational
numbers.

Example 3 : Addition of vectors

The domain (Z ; +) equips the set Z of integers with the relation of addition. An
n-tuple (z,, 2,,...,z,) inthe product 7" is called a vector. The relation of addition
(symbol +) is defined for a vector by applying the relation + of the domain (7 ; +)
to each component of Z". The domain (Z" ; +) is thus derived from the domain
(Z ;+).
+:={(@bc)la =Db+c¢ A i€{12.,n}

Structurally compatible mapping : Foramappingf: A — Z,the sets A and Z
may be components of domains, for instance (A ; +) and (Z ; +). The mapping f is
said to be compatible with the structure of the domains if the image f(a, + a,) of
the sum of two elements a, and a, from A is equal to the sum of theirimagesf(a,)
and f(ay,) in the target Z. A structurally compatible mapping preserves essential
properties of the domain A in the target Z. The target Z may therefore be used to
study the structure of the domain A. This bears a particular advantage if the num-
ber of elements in the image f (A) is significantly less than the number of elements
in A.

f(a; +a,) = f(ay) + f(ay)

Morphism : Amapping f: A— Z from the set of a domain (A ; R;) to the set
of adomain (Z; R;) is called a morphism if the rule f (a) of the mapping is structur-
ally compatible. If the ordered pair (a, b) of the elements a,b € A is contained in the
relation R,, then for a structurally compatible mapping the ordered pair (f(a), f(b))
of the images f(a), f(b) € Z is contained in the relation R,.
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Isomorphism : The concept of isomorphism allows the structures of different
domains to be compared. The domains (A ; R;) and (Z ; R;) are said to be
isomorphic if there is a morphism f: A — Z whose inverse f':Z— Aisalso a
morphism. Since the mapping f is bijective, the correspondence between the
elements of A and Z is one-to-one.

Automorphism : Anisomorphism f: A—A is called an automorphism, since the
domain (A ; R,) is mapped to itself.

Example 4 : Isotonic mapping as an example of a morphism

Lettwo sets M, and M,, be given, and let both sets be equipped with a relation <.
A mapping f: M; — M, is said to be isotonic if x; < x, implies f(x;) < f(x,). The
isotonic mapping from the domain (M, ; <) to the domain (M, ; <) is a morphism
which preserves the property “ordered set”.



3 ALGEBRAIC STRUCTURES

3.1 INTRODUCTION

A set is equipped with an algebraic structure by defining operations on elements
of the set. The operands may also belong to different sets. The type of the sets
considered determines the branch of algebra, for example :

—  boolean algebra for truth values

—  algebra of numbers for sets of numbers
—  algebra of sets for subsets

—  vector algebra for vector spaces

Computers can perform the basic algebraic operations for truth values and differ-
ent types of numbers directly. Algebraic structures are therefore very important in
engineering applications of computers. The properties of other structures which
cannot be handled directly by a computer are studied on the computer using prop-
erties of related algebraic structures.

This chapter provides an overview of algebraic structures. The definitions of inner
and outer operations and the properties of these operations are of fundamental
importance. Semigroups and groups are domains typical for sets with one opera-
tion; semirings, rings, fields and lattices are domains typical for sets with two op-
erations. Outer operations lead to vector spaces and matrix algebra. Important
subjects such as group theory and graph theory are treated in separate chapters.
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3.2 INNER OPERATIONS

Inner operation : The elementary algebraic structure of a set is provided by the
inner operation on the elements of the set. To every ordered pair (a, b) of the direct
product M x M, an inner operation assigns exactly one element ¢ of the set M. An
inner operation in a set M is therefore a mapping f from M x M to M. This mapping
is by definition left-total and right-unique.

f: MxM—=M with f(a,b) =c and a,b,ceM

An operator symbol is often used instead of a letter to designate an inner operation.
In this case, the mapping is represented as follows :

o: MxM—-M with aocb=¢c and ab,ce M

Associative operation : An operation o inaset M is said to be associative if
the result of two successive operations does not depend on the order in which the
operations are performed.

(aob)oc =ao(bo ) a,bceM

Commutative operation : An operation o in a set M is said to be commutative
if the order of the elements a and b in the operation a o b does not influence the
result of the operation.

aob=boa abeM

Identity element : An element e of the set M is called the identity element of
the domain (M; o) if every element a of M remains invariant when operated on
with e. There is at most one identity element for an inner operation. For if e, and
e, are two identity elements, then e;ce,=e, =e, shows that they are equal.

e is an identity element < /\M (aoe =eoca = a)
ae

Inverse : Anelement a~' of a set M is called the inverse of the element a in
the domain (M ; o) if the inner operation yields the identity element e of (M ; o) when
applied to a and a~'. If a certain element a possesses an inverse a™!, then this
is unique in M. In fact, if x and y are two inverses of a, then it follows from
X=eoX=Yyoaox=yoe=Yy that they are equal.

T-a'loa=¢e

a~'is the inverse of a < aoa
Rules of calculation for invertible elements : In a domain (M; o) with the iden-
tity-element.e; the following.rules.of calculation hold for the invertible elements of
(M;o):
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(1) The identity element e is invertible.
-1
e = e

1

(2) If the element a € M is invertible, then its inverse a™' is also invertible.

@"' = a

(3) Ifthe elements a,b € M are invertible, then a o b is also invertible.
(@aob)' = b 'oa™

Powers of an element : Let (M; o) be a domain with an associative operation
and an identity element e. If n is an integer and a is an invertible element, then
the n-fold product of a with itself is called the n-th power of a.

n > 0: a" := aocaoc..ca n times
n =0: a"m = e
n <0: a":= a'loa'lo.oa’ Inl times

Rules of calculation for powers : Let (M;o) be a domain with an associative
and commutative operation and an identity element e. Let the elements a and b
of M be invertible. Then the following rules of calculation hold for the integers m
and n:

(1) amoan — am+n (2) (am)n - amn
(3) aMob"™ = b"oa™ (4) (@aob)" = a"ob"

Idempotency of an element : Let(M; o) be a domain with an associative opera-
tion. An element a € M is said to be idempotent if operating on a with itself again
yields a. This definition implies that every power a" of an idempotent element a
with n > 0 is itself idempotent.

aisidempotent < a’ =aoca=a
Nilpotency of an element : Let(M; o) be adomain with an associative operation
and an identity element e. An element a is said to be nilpotent if there is a positive

integer m such that a™ = e. If an element is nilpotent, the least positive integer n
with a" = e is called the degree of nilpotency of a.

n—1
ais nilpotent of degreen < (a"=e | k/\1 ak =e)

An element a is said to be self-inverse if it is its own inverse, that is if a= a~".
A self-inverse element is nilpotent of degree n= 2.

ais self-inverse < a?=aoca=-¢
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Notation as a product or sum : Inner operations are represented either as a
product using the symbol o or as a sum using the symbol +. In the product nota-
tion, the identity element e is designated by 1, in the sum notation it is designated
by 0. The inverse of the element a is designated by a~" in the product notation and
by —a in the sum notation. The n-fold application of the operation to an element
is designated by a" in the product notation and by na in the sum notation. The
meaning of the expressions is independent of notation.

rules of calculation (inverse) 1= = 1 -0 =0
(@h = a -(-a) = a
(@ob)™!" = bloat —(a+b) = (-b) + (-a)
rules of calculation (n-fold) aMogh" = am+n ma+na = (m+n)a
(amn = amn m(na) = (mn)a
aMob" = bMo aMm ma+nb = nb+ma
(@eb)" = afob" n(@a+b) = na+nb
idempotent aoa = a a+a = a
self-inverse aoa = 1 a+a = 0
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3.3 SETS WITH ONE OPERATION

Introduction : The simplest algebraic structures consist of a set and one inner
operation. An algebraic structure is defined by stipulating certain properties for the
operation by definition. In the following these properties are called the defining
properties of the structure. The rules for the structure are derived from the defining
properties. The defining properties and the rules form the theory of the algebraic
structure.

This section is an introduction to the theory of semigroups and groups. The sum
notation with the symbol + for the inner operation is used. The product notation
with the symbol o is also used in the literature. As explained in Section 3.2, the two
notations are equivalent. The algebraic rules for semigroups and groups are for-
mulated and deduced from the defining properties. Their applicability is demon-
strated for numbers, sets, relations and geometric shapes.

Semigroup : A domain (M ; +) with the inner operation + in the set M is called
a semigroup if :

(1) The operation + is associative for all elements of M.

A semigroup (M ; +) is said to be commutative if the operation + is commutative
for all elements of M. A semigroup (M ; +) is said to be idempotent if all elements
of M are idempotent. A commutative and idempotent semigroup is also called a
semilattice.

Semigroup with identity element : A domain (M ; +) with the inner operation
+ in the set M is called a semigroup with identity element (monoid) if in addition
to (1) :

(2) The set M contains an identity element for the operation +.

Group : A domain (M ; +) with the inner operation + in the set M is called a
group if in addition to (1) and (2) :

(3) The set M contains an inverse —a for every element a of M.

A group (M ; +) is said to be commutative (abelian) if the operation + is commuta-
tive for all elements of M. A group (M ; +) is said to be self-inverse if all elements
of M are self-inverse.
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3.3 Sets with One Operation

Rules for idempotent semigroups : Idempotent semigroups with an identity
element are particularly important in applications. The defining properties imply
the following algebraic rules :

(1)

2

(3)

If (M ; +) is an idempotent semigroup with the identity element n, then there
is no inverse for any a=n.

If (M;+) is an idempotent semigroup with the identity element n, then
a+b=n implies a=b=n.

a+b =n = a=n A b=n

if (M;+) is an idempotent semigroup with more than one element, then
(M ; +) cannot be a group.

Proof : Rules for idempotent semigroups

(1)

@)

By definition, a semigroup (M ; +) is idempotent if a + a = a for all elements
ae M. If a possesses an inverse (—-a), then a=a+n and n=(a +(-a))
together with the idempotency a +a = a and the associative law imply that
a=a+n=a+(a+(-a))=(a+a)+(—-a)=a+(-a)=n. Hence the identity
element is the only element which has an inverse.

Since a + b =n, it follows that a is the inverse of b and b is the inverse of a.
However, by (1) there is no inverse for a = n. Hence a + b =n holds only for
a=nandb=n.

By definition, in a group (M ; +) every element ac M has an inverse (-a).
However, by (1) an idempotent semigroup (M ; +) contains no inverse for
any element a # n. Hence an idempotent semigroup with more than one ele-
ment cannot be a group.

Rules for groups : The defining properties for groups imply the following alge-
braic rules :

(1)

3)

(4)

If (M ; +) is a group, the following cancellation laws hold :

a+b =a+c = b=c
b+a =c+a = b=c

il

If (M ;+) is a group, every equation has a unique solution :
(-a)+b
b+ (-a)

at+x=>b X

il

x+a=>b X

il

If (M ; +) is a commutative group, the equations a + x =b and x + a =b have
the same solution.

If (M ; +) is a self-inverse group, then it is commutative.
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Proof : Rules for groups

M

(4)

Operating on the equation a+b=a+c with (-a) from the left yields
(-a) +(a+b) =((-a) +a) + b =b for the left-hand side of the equation and
(-a) + (a +c) =((-a) + a) + ¢ =c for the right-hand side, so that b =c. This
establishes the validity of the first cancellation law. The validity of the second
cancellation law is proved analogously.

Operating on the equation a+x=Db with (-a) from the left yields
(—-a) + (a +x) =((-a) + a) + x =x for the left-hand side and (-a) +b for the
right-hand side, so that x =(—a) +b. The proof that the equation x+a=b
has the unique solution x =b + (—a) is carried out analogously.

If the group (M ; +) is commutative, the equationsa+x=bandx+a=bare
equivalent, since a + x = x + a. As the solution is unique, they have the same
solution.

If the group (M ; +) is self-inverse, then by definition a + a = n for all elements
a e M. Operating on the equation (a + b) + (a + b) = n with a from the left and
with b from the right yields a+(a+b)+(a+b)+b=(a+a)+b+a+
(b+b) =n+b+a+n =Db+a for the left-hand side and a+n+b=a+b
for the right-hand side, so that the commutative law b+a=a+b holds.
Hence a self-inverse group (M ; +) is commutative.

Example 1 : Domains of numbers

(1)

@)

@)

(%)

The domain (N' ; +) for the addition of positive natural numbers is a commu-
tative semigroup.

The domain (N ; +) for the addition of natural numbers including 0 is a com-
mutative semigroup with the identity element 0.

The domain (Z ; +) for the addition of integers is a commutative group with
the identity element O,

The domain (Q ; o) for the multiplication of rational numbers is a commutative
semigroup with the identity element 1. The element 0 is the only element of
Q without an inverse. The domain (Q'; o) for the multiplication of non-zero
rational numbers is a commutative group.

The domain (N ; min) for the minimum min {a, b} of natural numbers is an
idempotent and commutative semigroup, and therefore a semilattice.

— The operation min is associative :
min {a, min{b, c}} = min {min{a, b}, ¢}
— The operation min is commutative :
min {a,b} = min{b, a}

—_The operation.min.is.idempotent.:
min {a,a} = a



66 3.3 Sets with One Operation

Example 2 : Domain of sets

Let a reference set M be given. Every subset A C M is an element of the power set
P(M). The inner operations union U, intersection N and symmetric difference @
are defined in the power set P(M) (see Section 2.2.2). The properties of the
domains (P(M); u), (P(M); n) and (P(M); @) are compiled in the following table
for elements A, B, C € P(M).

Property T (PM); V) L (PMM); (P(M); ®)

associative AU(BUC) = ’ AN(BNC) = ABB®HC) =
(AUB)UC (ANB)NC (A®B)®C

commutative AUB = BUA ANB = BNC A®B = BOA

identity element AUD = A ] ANM = A ADD = A

idempotent AUA = A ANA = A

self-inverse ‘ AGA =0

The algebraic structure of the various domains may be read off directly :

(1) The domain (P(M); u) is a commutative and idempotent semigroup with the
empty set @ acting as an identity element, and hence a semilattice with the
identity element @.

(2) The domain (P(M); n) is a commutative and idempotent semigroup with the
reference set M acting as an identity element, and hence a semilattice with
the identity element M.

(3) The domain (P(M); @) is a commutative group with the empty set ) acting as
an identity element. It has the special property that every element A € P(M)
is self-inverse. The domain (P(M); @) is therefore a self-inverse group with
the identity element 0.

Example 3 : Domain of relations

Let a reference set M be given. Every relation A is a set of ordered pairs (a, b) with
a,b € M. It is a subset of the direct product M x M, and hence an element of the
power set P(M x M). In addition to the union U and the intersection N, the composi-
tion o is defined as an inner operation in the power set P(M x M) (see Section 2.4).
As in Example 2, the domains (P(M x M) ; u) and (P(M x M) ; n) are semilattices.
The domain (P(M x M) ; o) is a semigroup with the identity relation I as an identity
element, since the following properties hold for elements A,B,C € P(M x M) :

Property (PMxM); o)

associative Ao(BoC)
identity element Aol

(AoB)oC
A=10cA
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Example 4 : Covering rotations of an equilateral triangie

An equilateral triangle ABC covers itself when rotated through 0 degrees, 120
degrees or 240 degrees about its center 0. The rotation a, through 0 degrees
leaves the triangle in its original position. The rotation a, through 120 degrees
takes A to B, B to C and C to A. The rotation a, through 240 degrees takes A to
C, B to A and C to B. Rotations which differ by 360 degrees are considered to be
identical.

B \_ /c CxN_ A

rotation eié : 0 degrees rotation ay : 120 degrees rotation a, : 240 degrees

Let the set G contain the distinguishable covering rotations {a,, a,, a,}. The
composition a; o a,, (rotation a; after rotation a_ ) is chosen as an inner operation
0:GXx G —G. Theresult a, = a;oa_, is the rotation a, which leads to the same
position of the triangle ABC as performing the rotation a; and then the rotation a,.
The results of the operation are arranged in the following multiplication table for
ajoa,.

o a, ay ay

2y 4y a4 a

a; | a; | a, | a,

8 | 3 | 8 |

The domain (G ; o) is a group. The identity element is a,. The inverse elements
are aj' = a,, a;' = a, and a;' = a,. The associative law holds in (G ; ). The
multiplication table is symmetric, so that a,0a, = a, o a; holds. Hence the group is
commutative.

Letthe equation a, o x = a, be given. The solution x = a7 o a,, is determined using
the multiplication table as follows :

— g1 - -
X = aj oay = a,0a, = a,
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3.4 SETS WITH TWO OPERATIONS

3.4.1 INTRODUCTION

An algebraic structure for a set with two inner operations may be decomposed into
two algebraic substructures for the set with one inner operation each, together with
the compatibility properties of the two operations. According to this principle, an
algebraic structure with two operations is defined by defining the two algebraic
substructures and the compatibility properties consistently. The rules for the alge-
braic structure are derived from these defining properties. The defining properties
and the rules form the theory of the algebraic structure.

Algebraic structures for additive and multiplicative domains (M ; +, o) are treated
as a generalization of number theory. The subdomains (M ; +) and (M ; o) for the
addition + and the multiplication o have different mathematical properties. The
compatibility of the addition + and the multiplication o is ensured by the distribu-
tive law. Different properties of the subdomains (M ; + ) and (M ; o) lead to different
algebraic structures. Semirings, rings and fields are among the important struc-
tures.

Algebraic structures for dual domains (M ; L, M) with the disjunction u and the con-
junction r are treated as a generalization of the theory of truth values and of set
theory. The subdomains (M ;L) and (M ;) have the same mathematical proper-
ties, so that the operations LI and n are interchangeable. This interchangeability
is the basis of duality. Compatibility is ensured by the adjunctive, distributive and
complementary laws in dual form. Lattices and boolean lattices are examples of
domains with dual structure.
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3.4.2 ADDITIVE AND MULTIPLICATIVE DOMAINS

Introduction : Domains (M ; +, o) with the inner operations + (addition) and o
(multiplication) in the set M are treated as generalizations of the algebraic structure
of numbers. The additive domain (M ; +) and the multiplicative domain (M ; o)
possess different mathematical properties, so that the operations + and o are not
interchangeable. The compatibility of the two operations is guaranteed by the
distributive laws. It is assumed that the set M contains more than one element.

Rank of the operations : The expression a+b o ¢ in a domain (M ; +, o) is
ambiguous; its value depends on the order in which the operations + and o are
performed. The order of execution is therefore determined according to the rank
of the operations (o before +). A different order may be prescribed using paren-
theses, as in the expression (a +b) o ¢ : In this case, the addition is performed
before the multiplication.

Distributive laws : The distributive laws ensure the compatibility of the opera-
tions + and o in the domain (M ; +, o). The operation o is said to be distributive
with respect to the operation + if foralla,b,c e M:

ao(b+c) = aob +aoc

(@a+b)oc = aoc + boc

Identity elements : If there is an identity element for the addition +, it is called
the zero element and designated by 0. If there is an identity element for the
multiplication o, it is called the unit element and designated by 1.

zeroelement a+0 = 0+a = a

unitelement aol1 = 1o0a = a

Zerosums : Adomain (M; +, o) with the zero element 0 is said to be without zero
sums if a + b =0 implies a =b = 0. This is equivalent to the property that there is
no additive inverse in M for any element a = 0. If the addition + is idempotent, then
there is no inverse for any a = 0, so that the domain (M ; +, o) is without zero sums.

(M;; +, o) is without zero sums = A /b\ (@+b=0 = a=0 A b=0)
a
Zero divisors : A domain (M; +, o) with the zero element 0 is said to be without
zero divisors if acb =0 impliesa=0o0rb=0.

(M; +, o) is without zero divisors < A /b\(aob=0 = a=0 VvV b=0)
a
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Semiring : A domain (M ; +, o) with the inner operations + and o in the set M
is called a semiring if :

(1) The domain (M ; +) is a commutative semigroup.
(2) The domain (M ;o) is a semigroup.
(3) The multiplication o is distributive with respect to the addition +.

The semiring (M ; +, o) is called a semiring with zero element if there is a zero
element 0 which acts as an identity element under the addition +. The semiring
(M ; +, o) is called a semiring with unit element if there is a unit element 1 which
acts as an identity element under the multiplication o. The semiring (M ; +, o) is
said to be commutative if the multiplication o is commutative. Semirings with zero
element may be without zero sums or without zero divisors.

Ring : Adomain (M; +, o) with the inner operations + and o inthe setMis called
aringif :

(1) The domain (M ; +) is a commutative group.

(2) The domain (M ;o) is a semigroup.

(3) The multiplication o is distributive with respect to the addition +.

A ring (M ; +, o) differs from a semiring in that the additive domain (M ; +) in a
semiring is a semigroup, while in a ring it is required to be a group. A ring contains
a zero element 0 which acts as an identity element under addition.

Aring (M; +, o) is called a ring with unit element if there is a unit element 1 which
acts as an identity element under the multiplication o. A ring (M ; +, o) is said to
be commutative if the multiplication o is commutative. A ring may be without zero
divisors. A commutative ring without zero divisors is called an integral ring (integral
domain).

Rules for rings : The defining properties of a ring (M ; +, o) imply the rules for
the additive group (M ; +), as well as additional rules for multiplication :

(1) If (M;+, o) is a ring, then the zero element 0 is invariant with respect to
multiplication.

ao0=00a=0

(2) If (M;+, o) is a ring, then multiplication with additive inverses follows the
rules known as sign rules in number theory.

ao(—b) = (-a)ob = —(aob)
(—a)o(—b) =aob
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(8) If(M;+, o)is aring without zero divisors, then the following cancellation laws
hold for multiplication :

aob=ao0c = b=c for a=20
boa=coca = b for a=20

Proof : Rules for rings

(1) By the first distributive law, aocb + aocc = ao(b+c). Forb = ¢ = 0, this
yieldsao0 + ao0 = ao0. Adding —(a o 0) on both sides yields ~ (a- 0) +
(@00 + ao0) = (- (ao0) + aoc0) +ac0=aoc0 for the left-hand side
and —(ao0) + ac0=0 for the right-hand side, so that the multiplicative
invariance a o 0 =0 of the zero element holds. The multiplicative invariance
00 a =0 of the zero element is proved using the second distributive law.

(2) By the first distributive law, acb+aoc=ao(b+c). On substituting
¢ = (-b), it follows that aocb + ao(-b) =ao(b+ (-b)) =ao-0 = 0. But
aob+ ao(-b) = 0implies that a o (—b) is the additive inverse of ao b, and
henceao (-b) = —(aob). Therule (-a)ob = —(aob) is proved analogously
using the second distributive law. For a and —b, the two rules yield
(—a)o(-b) = —((-a)ob) = —(—(acb)) = acb.

(3) Applying the first distributive law to 0 = aoc0=ao(c +(—c)) yields aoc +
ao(—c) = 0. Then aoc = aob implies acb +ao(—c) =ao(b+(-c)) =0. If
a =0, then in a ring without zero divisors it follows that (b + (—c)) = 0. Thus
—c is the additive inverse of b, and hence b=c. This yields the first
cancellationlawaob = aoc = b = ¢ for a = 0. The second cancellation law
is proved analogously.

Boolean ring : Aring (M; +, o) is said to be boolean if every element of M is
idempotent with respect to multiplication. Idempotency with respect to multiplica-
tion leads to the following properties :

(1) The domain (M ; +) is a self-inverse group.
(2) The domain (M; o) is a semilattice.

Proof : Properties of a boolean ring
By definition, the multiplicative semigroup (M ; o) of the ring (M ; +, o) is idem-
potent, so that a® = aca = a holds for all ac M.

(1) The multiplicative idempotency of (a-+a) implies (a+a)=(a+a)? =
(a+a)o(a+a)=a?+a’+a%+a°=(a+a)+(a+a), so that (a+a) =
(a+a)+(a+a). Adding —(a+a) to both sides yields —(a+a)+
(@+a) =0 on the left-hand side and —(a+a)+ ((a+a)+(a+a))=
(-(a+a) + (a+a)) +(a+a) =a-+a on the right-hand side, and hence
a+a=0Thus,asis,its;,ownadditive inverse. The group (M ; +) is therefore
self-inverse.
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(2) The multiplicative idempotency for (a+b) implies (a+b)=(a+b)? =
(a+b)o(a+b) = a2 +aob +boa+b?=a+b+acb+boa, sothata +
b=a+b+aob+boa. Adding —(a+b) to both sides yields —(a+b) +
(a+b) = 0 for the left-hand side and —(a+b)+(a+b)+acb+boca =
aob +boa for the right-hand side, so that aocb +boa = 0. Adding boa on
both sides yields aob + boa +boa = acb +0 = aob for the left-hand side
(due to the self-inverse property of addition) and 0 +boa = boa for the
right-hand side, so that the multiplicative commutativity acb = boa holds.
Thus the multiplicative semigroup (M ; o) of the ring (M ; +, o) is idempotent
and commutative, and hence a semilattice.

Field : A domain (M +, o) with the inner operations + and o in the set M is
called a field if :

(1) The domain (M ; +) is a commutative group.
(2) The domain (M —{0}; o) is a group.
(3) The multiplication o is distributive with respect to the addition +.

Afield (M ; +, o) differs from a ring in that the multiplicative domain (M —{0} ; o) in
a field is a group, while the multiplicative domain (M ; o) in a ring is a semigroup.
Afield (M ; +, o) contains a zero element 0, which acts as an identity element under
addition, and a unit element 1, which acts as an identity element under multiplica-
tion. The definition of a field cannot require that (M ; o) be a group, since the zero
element0, due to its multiplicative invariance ao0 = 0oa = 0, has no multiplicative
inverse a such thatao0 = 0oca = 1. Afield (M ; +, o) is said to be commutative if
the multiplication o is commutative.

Rules for fields : The defining properties of a field (M ; +, o) imply the algebraic
rules for the additive group (M ; +), for the multiplicative group (M —{0} ; o) and for
rings, as well as the following additional rules :

(1) Afield (M; +, o) has no zero divisors, so thatao b =0 impliesa=0orb =0.
aocb=0 = a=0 vV =0

(2) Ifthefield (M ; +, o) is commutative, then the rules of calculation for fractions
apply :
(@aob™) o (cod™)
(ao b—1) +(co d-1)

(@aoc)o(bod)™ b,d = 0
(@aod+cob)o(bod) b,d = 0

Proof : Rules for fields

(1) Multiplying acb=0 with a=0 by a~! from the left yields a—'oaob =
tobr=ibr=ra7100:=05s0.thatsb=0. Multiplying a ob = 0 with b = 0 by b~"
from the right yields acbob™'=ac1 =a=00b"' =0, sothat a=0.
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(2) The rules are proved using the associative, commutative and distributive
laws for addition and multiplication.

(@aoc)o(bod)™ = (aoc)o(dlob™) =ao(cod™)ob™ =(acb™)o(cod™)
(aod+cob)o(bod)™ = (acd+cob)o(dTob™) =
(@od)o(d™'ob™") + (cob)o(bod™) =
ao(dod™)ob™" +co(bob)od™ =
aclob™ +cotod™ = aob™ +cod™

Summary : Additive and multiplicative domains (M ; +, o)

Property 1 Semiring Ring T Integral ring | Boolean ring Field
operation +
associative yes yes yes yes yes
commutative yes yes yes yes yes
zero element 0 yes yes yes yes
inverse yes yes yes yes
idempotent no
self-inverse yes
without zero sums no no no no
operation o
associative yes yes yes yes yes
commutative yes yes
unit element 1 yes
inverse except for 0 yes
idempotent yes
self-inverse no
without zero divisors [ yes yes
operations + and o ]
distributive yes yes \ yes yes yes

Note that the operation + or o cannot be both idempotent and self-inverse, and
that the existence of additive inverses implies the existence of zero sums.
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Example 1 : Domains of numbers

(1) The domain (N\'; +, o) for the addition and multiplication of positive natural
numbers is a commutative semiring with the unit element 1.

(2) The domain (N ; +, o) for the addition and multiplication of natural numbers
including zero is a commutative semiring without zero sums and without zero
divisors, with the zero element 0 and the unit element 1.

(3) The domain (Z ;+, o) for the addition and multiplication of integers is a
commutative ring without zero divisors with the zero element 0. It is therefore
an integral ring.

(4) Thedomain (Q ; +, o) for the addition and multiplication of rational numbers
is a commutative field with the zero element 0 and the unit element 1.

Example 2 : Ring of sets

The domains (P(M); @) for the symmetric difference and (P(M); n) for the
intersection of sets are treated in Example 2 of Section 3.3. The domain (P(M) ; ®)
is a commutative group. The domain (P(M) ; n) is a commutative semigroup. The
intersection N is distributive with respect to the symmetric difference @. The
domain (P(M) ; @, n) is therefore a commutative ring with the empty set @ acting
as the zero element and the reference set M acting as the unit element. Since
idempotency holds for the intersection AnA = A, the ring is boolean. The following
properties hold for A,B,Ce P(M) :

Property Symmetric difference @ , Intersection N
associative | AD(B®C) = (AGB)®C ANBNC) = (ANB)NC
commutative ADB = BOA ANB = BNA
distributive | ANB®C) = (ANB)S(ANC) { (A®B)NC = (ANC)®(BNC)
zero element ‘ ABD = A ‘ ANG = @
unit element { ANM = A
inverse ( ABA = 0 ‘
idempotent J ANA = A
L
AsB - a AnB 7 \
iy ~/ s
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Example 3 : Semiring of relations

The domains (P(M x M) ; u) for the union and (P(M x M) ; o) for the composition
of relations are treated in Example 3 of Section 3.3. The domain (P(M xM) ; u) is
a commutative semigroup. The domain (P(M x M) ; o) is a semigroup. The com-
position o is distributive with respect to the union u. The domain (P(M xM) ; U , o)
is therefore a semiring with the empty set § acting as the zero element and the
identity relation I acting as the unit element. The following properties hold for
A,B,CeP(MxM):

Property Union U Composition o

associative AUBUC) = (AUB)UC Ao(BoC) = (AoB)oC
commutative AUB = BUA

distributive Ao(BUC) = (AoB)U(AoC) | (AUB)oC = (AoC)U(BoC)
zero element AU = A Aol = @ = QoA
unit element Aol = A = Io0A
idempotent AUA = A

The semiring (P(MxM) ; U , o) of relations has the additional property that the
union U is idempotent and that the zero element @ is invariant with respect to the
composition o.
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3.4.3 DUAL DOMAINS

Introduction : Domains (M; u, 1) with the inner operations U (disjunction) and
mn (conjunction) in the set M are treated as generalizations of the algebraic
structure of truth values and sets. The disjunctive domain (M; L) and the conjunc-
tive domain (M ; ) have the same properties. The laws for the compatibility of the
operations are formulated such that the operations L and n are interchangeable.
Domains with these properties are called dual domains. It is assumed that the set
M contains more than one element.

Adjunctive laws : The operations U and r of the domain (M; U, n) are said to
be adjunctive if foralla,be M :

an(aub) = a
au(anb) = a

Distributive laws : The operations u and r of the domain (M; U, n) are said to
be mutually distributive if for all a,b,ce M :

an(uc)
au(brc)

(@anb)u (arc)
(aub)m(auc)

It

Identity elements : If there are identity elements for disjunction and conjunction,
they are called the zero element and the unit element and are designated by 0 and
1, respectively.

Oua = a

ina = a

zero element: au0
unit element : ani

Lattice : A domain (M; U, n) with the inner operations L1 and 1 in the set M is
called a lattice if :

(1) The domain (M; L) is a commutative semigroup.
(2) The domain (M; ) is a commutative semigroup.
(3) The operations U and r are adjunctive.

A lattice (M; U, ) is called a lattice with zero and unit element if there is a zero
element that acts as the identity element with respect to disjunction and a unit
element that acts as the identity element with respect to conjunction. A lattice
(M; u, n) is said to be distributive if the operations are mutually distributive.
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Rules for lattices : The defining properties of a lattice (M; U, r) imply the
following algebraic rules :

(1

(4)

If(M; u, n)is alattice, then the elements are idempotent with respect to both
operations.

ala =a arla = a

If (M; L1, M) is a lattice, then the following consistency rule holds :
aub=b < anb=a
If (M; U, ) is a lattice with zero and unit element, then the zero element 0

is invariant under the operation r and the unit element 1 is invariant under
the operation u .

an0 =0na=20 aul =1ua=1
If (M; U, n) is a distributive lattice, then the following uniqueness rule holds :

The elements a and b are equal if their operations with an element c yield
identical results.

(auc=buc) A (amc=bnc) = a=>b

Proof : Rules for lattices

(1)

)

@)

The first adjunctive law am(aub) =a with b=a vyields the equation
an(aua)=a. The second adjunctive law a U (arb) =awithb =au a yields
the equation au(ar(aua)) =a. Substituting the first equation into the
second equation yields the idempotency rule aa = a for the operation U.
Substituting the idempotency rule au a = a into the first equation yields the
idempotency rule aria = a.

Substituting aub=>b into the first adjunctive law ar(aub)=a yields
arb=a,sothat aub=b = amnb =a holds. The second adjunctive law
bu(bra)=Dbis equivalent to (arb) Lb =b by commutativity; together with
anb=a,thisyieldsaub=b, sothatarnb=a = awub =b holds. Together,
aub=b = anb=aandarnb=a = aub=bimply the consistency rule
aub=b « anb=a.

The second adjunctive law bu(bma)=b with b =0 yields the invariance
O0u (0na) = 0ra = 0. By commutativity, this implies 0ma =amn0 = 0. The first
adjunctive law bu(brma) =b with b=1 yields the invariance 1n(1ua) =
1ua =1. By commutativity, this implies 1ua= au1=1.

The equality a = b is proved from the conditionsauic=bucandarnc=bnc
using the adjunctive, commutative and distributive laws :
a = an(awuc)
(bma)u(bric)

Il

ari(bLic) = (anb)u(anc) =
bri(auc) = br(buc) =b
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Boolean lattice : Adomain (M; u, 1, ~) with the binary operations L and r1 and
the unary operation ~ (complement) in the set M is called a boolean lattice if :

(1) The domain (M; L) is commutative and possesses the identity element 0.
aub =bua aul = a

(2) The domain (M;n) is commutative and possesses the identity element 1.
anb =bna ant =a

(3) The operations U and n are mutually distributive.
an(buc) = (anb)u(anc) au(nc) = (aub)n(auc)

(4) The complement a of a satisfies the following conditions :
aua =1 ana =0

Note that, in contrast to the definition of a lattice, the definition of a boolean lattice
does not include the associative and adjunctive laws. These laws are derived from
the defining properties (1) to (4). They are due to the operation = (complement).

Rules for boolean lattices : The defining properties of the boolean lattice
(M; u, n, ~ ) imply the following rules :

(1) Theboolean lattice has all properties of a distributive lattice with zero and unit
element.

(2) The double complement of an element is the element itself.

a=a
(8) The zero element and the unit element are complements of each other.
0=1 1=0

(4) De Morgan’s rules hold for the complements. o
(aub) = anb (amb) = aub

Proof : Rules for boolean lattices

(1) The boolean lattice is a distributive lattice with zero and unit element if and
only if the operations U and N are adjunctive and associative. Adjunctivity
and associativity are proved by using the complementary properties to prove
idempotency, the invariance of the identity elements and the uniqueness
rule. To improve the legibility of the proof, the defining properties of the
identity elements and the complementary, commutative and distributive laws
are designated by N, K, C and D, respectively. These designations serve as
areference to the property being used in the transformation of an expression.
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identity : aul0 =0ua=a ant =1na =a (N)
complement : awua = aua =1 ana = ana =0 (K)
commutative : aub = bua anb =bna (C)
distributive : au(bnc)=(aub)r(auc) ar(buc)=(anb)u(anc) (D)

All properties derived from the dual defining properties are themselves dual.
By virtue of this duality, a proof of one of the two dual properties suffices. The
corresponding dual property is obtained by interchanging the operations L
and n, including their identity elements.

The operations U and 1 are idempotent.
aua =a ana =a (id)

Proof : Idempotency of the operation LI
aua Y (aua)m1 s (aua)n(aua) 2 au(ana) Kauo¥a

The zero element 0 is invariant with respect to the operation r, and the
unit element 1 is invariant with respect to the operation u.

an0 =0 aut =1 (in)
Proof : Invariance of the zero element
ano 2 (amo)uo X (@nO)u(ana) 2 arn(Oua) Nanz £o

The elements a and b are equal if their operations L and 1 with an
element ¢ and its complement ¢ yield identical results.

(auc =buc) A (@auc =buc) =>a=>b

(@anc =bmec) A (anc

brnc) =a=>b (un)
Proof : Uniqueness rule with the operation L

(auc)m(auc) = (buc)n(buc) 2

au(cnc) = bu(cnc) £ au0 = buo = a=>b

The operations LI and N are adjunctive.

an(aub) = a au(anb) = a (ad)
Proof : First adjunctive law

an(aub) 2 (au0)yn(aub) el au(0nb) g au(bno) D auo

nz

The operations Lt and 1 are associative.

au(buc) = (aub)uc an(brc)=(arnb)nc (as)
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)

3)

(4)
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Proof : Associative law for the operation u

The proof is performed in three steps. In the first step, it is proved that
an((aub)uc)=an(au(buc)). In the second step, it is proved that
an({aub)uc) =an(au(buc)). In the third step, the uniqueness rule
(un) is used to prove the associative law (aub)uc = aLi(buc).

an((aub)uc) = (arl(aub)) (arlc)aéjau(aﬂc)azdaaéjaﬂ(au(buc))

D

b))u(anc)=((an )u(anb))u(anc)ﬁ
(@nb)u(anc) 2 an(buc) = 0u(@n(buic))

an((aub)uc) = (

(Ou(anb))u(anc)

U

n(au
N K

(@na)u(@n (buc) 2 an(aulbuc)

an((aub)uc) = an(au(buc)) A

an((aub)uc) = an(au(buc)) = (aub)uc = au(buc)
The double complement a is the element a itself.
a=a (k2)
Proof : By definition, the complement a of a satisfies aua =1andana =0.
As the complement of a, the double complement a must therefore satisfy
aua=1andana=0.Henceaua= auaandana= an a. Together
with the uniqueness rule (4) for a distributive lattice, this yields a = a:
(Gua=3aua) A (aua=ana) = a=a
The zero element and the unit element are complements of each other.
0 =1 1=0 (nk)

Proof : Complement of the zero element

By definition, the complement 0 of 0 satisfies 0110 =1and 010 = 0. By the
invariance (in) of the zero and unit element and by commutativity, 110 =1
and 10 =0.Hence 0u 0 = 1u0and 00 = 1M 0. Together with the unique-
ness rule (4) for a distributive lattice, this yields 0=1:

(0u0 = 1u0) A (0N0 =1M0) = 0 =
De Morgan’s rules hold for the complements.
(aub)=ar1b (anb)=aub ' (M)
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Proof : First of De Morgan’s rules

The proof is performed in three steps. In the first step, (aub) U (anb)=1is
shown to hold. In the second step, (a U b)r(arb) =0 is shown to hold.
These two results together form the complementary law for (aub) and
(amb) , sothatin the third step it may be inferred that the complement (a Lib)
of (aub) is (arb).

(aubju(@nb) 2 (@ubjuan(@ub)ub) 2
(au(aub)n(@@ub)ub) £ ((@aua)ub)n(au(bub)) £
(1ub)ym(aut) Dynt1 84

(@ub)n (@anb) 2 (an(@nb))u(br(anb)) <

(@n(@nb))u(@nb)rb) £ ((ana)nb)u(an(bnb)) &

©nb)u(auo) 2 ouo Yo

(@ub)u(@nb) =1) A (@@ub)n(@nb)) =0) = (aub)=anb

Boolean lattice and boolean ring : Every boolean lattice (M ;u,n) may be
used to construct a boolean ring (M ; +, o) with unit element by the foliowing trans-
formation :

aob := anb

a+b := (anb) u(anb)

Conversely, every boolean ring (M ; +, o) with unit element may be used to con-
struct a boolean lattice (M ;L1,M) by the following transformation :

anb := aob
aub := (a+b)+(aob)

Proof : Transformation of a boolean lattice into a boolean ring

The specified transformation rule for a boolean lattice (M ;u,M) yields a boolean
ring, which by definition has the following properties :

(1)
)
@)

The domain (M; o) is an idempotent semigroup.
The domain (M; +) is a commutative group.
The multiplication o is distributive with respect to the addition +.

The same:designations-assin;the;proofof the rules for boolean lattices are used
in the proof of these properties.
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By definition, the product aob is identical with the operation anb. The opera-
tion r of the boolean lattice is associative and idempotent. Hence (M; o) is
an idempotent semigroup. It possesses an identity element, namely the unit
element 1.

The sum a +b is defined by (anb)u(anb). In the following, the domain
(M; +) is shown to possess all defining properties of a commutative group.

The zero element 0 is the identity element of the operation L1 and of the
addition + :

0+b:=(0nb)u(@nb) 2 ou@nb) X ounb) 2 oub

Every element a is its own inverse, so thata+a = 0.
at+a:=(ana)u(@na) 2ouo Vo

Addition is commutative, so that a+b = b+a.
a+b:=(anb)u(@nb) £ @nb)u@nb) € (pbna)u(bna) =b+a

Addition is associative, so that a + (b + ¢) = (a + b) + ¢. In the proof of
associativity, the complement of the sum a + b is determined according
to De Morgan’s rules.

= (anb)u @nb) ¥ @nb) n@nb) ¥ (aub)n(@ub)
D

(an(aub)u(bn(aub)) 2 (@naju(@nb)u

N @nb)u(bna)

(a+Db)
(aub)n(aub)
(bma)u(brb)) & (Ou(@nb))u((bra)uo)
(armb)u(anb)

a+(b+c) = (an(b+c)u(an(b+c) = (an((bnc)u(bre)) u

(@an((bne)u(bnc) = (anbngc)u(anbne)u(anbne)u(@nbnc)

Il

(a+b)+c = ((a+b)nT)u((a+b)uc)) = (((@anb)u(@nb))nc) u

1
(nb)u(anb))nc) 2 (anbne)u(@nbnc)u(@nbnc)u(anbrc)

The expressions for a + (b + ¢) and (a + b) + ¢ contain the same terms
connected by U. The order of these terms is irrelevant, since the oper-
ation U is commutative and associative. Hence the associative law
a+(b+c)=(a+b)+cholds.
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(3) The multiplication o is distributive with respect to addition, so that the first

distributive law ao (b + ¢) =aob +aoc holds.
ao(b+c) = an(b+c) = an((bnc)u(bnc)) 2 (anbnc)u(@nbnec)
_ -

aob+aoc = ((aob)m(acc))u((ac

O

(aec))

((@amb)m(amc))u((amb)n(arc))

=

((@anb)m(auc))u((aub)n(anc)) 2

(anbna)u(@nbnc)u(@nancyu(bnanc) <

Iz

(ananb)u(@anbnc)u(@nanc)u(@nbrnc)
(Onb)u@nbng)unc)u(@nbne) 2 @anbnc)u@nbnc)

The expressions for ac (b + c) and aob + acc contain the same terms con-
nected by LI in the same order. Hence the first distributive law holds. The
validity of the second distributive law is proved analogously.

Example 1 : Lattice of numbers
The domain (Q ; min, max) for the minimum min {a, b} and the maximum max {a, b}
of rational numbers is a distributive lattice, since :
—~  The operations min and max are associative :
min {a, min{b, c}} min {min {a, b}, c}
max {a, max{b, c}}

max {max {a, b}, c}

—  The operations min and max are commutative :
min {a,b} = min {b,a}
max {a,b} = max{b,a}

—  The operations min and max are adjunctive :
max {a, min {a,b}} = a
min {a, max{a,b}} = a

—  The operations min and max are mutually distributive :
max {a, min {b,c}} = min {max{a,b}, max{a,c}}
min {a, max{b,c}} = max{min {a,b}, min {a,c}}

The domain ([0.0, 1.0] ; min, max) for the minimum min{a,b} and the maximum
max {a, b} of the real numbers in the closed interval 0.0 < a,b < 1.0 is a distributive
lattice with the zero element 1.0 and the unit element 0.0.

— __zeroelement 1.0 : _min {a,1.0} = min {1.0,a}

Il

— unitelement 0.0: max{a, 0.0} = max{0.0,a}
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Example 2 : Logical lattice

The domain (T; v, A) with the set T ={0,1} = {false, true} of truth values and the
logical operations v and A is a boolean lattice. The identity elements are n=0
and e = 1. The complement a of ais —a. The following laws hold for elements a,
b, c € T (see Section 2.1.3) :

Property v (logical or) A (logical and)
associative (@vbyvec = avive @Aabyac = an(bAac
commutative avb =bva aAb =bnaa
adjunctive av(@Aab) = a anfavb) = a
identity avo = a an0o =20
avi =1 anl = a

complementary av(—a =1 an(—a) =0
distributive avbac = (avb)a(ave)| aAn(bve = (@Aabyv(@vece)

(anb)vec = (@ave)a(bve)| (@avb)ac = (aAnc)v(bAac)

Example 3 : Lattice of sets

The domain (P(M); u, n) with the power set P(M) of a non-empty set M and the
operations U (union) and N (intersection) on sets is a boolean lattice. The identity
elements in P(M) are the empty set n = () and the reference set e = M. The comple-
ment A of an element A of P(M) is the difference M — A. The following rules hold
for elements A, B,C € P(M) (see Example 2 in Section 3.3) :

Property U (union) N (intersection)
associative (AUB)UC = AU(BUC) (ANB)NC = AN(BNC)
commutative AUB = BUA ANB = BNA
adjunctive AUMANB) = A ANAUB) = A
identity AUG = A ANg =9
AUM = M ANM = A

complementary AUA = M ANA =90
distributive AUBNC) = (AUB)N(AUC)| AN(BUC) = (ANB)U(BNC)

(ANB)UC = (AUC)N(BUC)| (AUB)NC = (ANC)U(BNC)
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Example 4 : Lattice of sets and ring of sets

The lattice (P(M) ; U, n) of sets with the operations U (union) and n (intersection)
on sets is treated in Example 3. The lattice (P(M) ; U, n) is boolean and may there-
fore be transformed into a boolean ring (P(M); +,0) according to the following
prescription :

AoB := ANB
A+B := (ANB)URANB) A B
(AN (M=B))U (M—A)N B)
(A=(ANB)) U (B—(ANB))
(A-B) U(B-A) M
= AGB A®B

Il

The boolean ring (P(M) ; +,0) is identical with the ring (P(M) ; @, n) of sets with the
operations @ (symmetric difference) and n (intersection). This ring of sets is
treated in Example 2 of Section 3.4.2.
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3.5 VECTOR SPACES

3.5.1 GENERAL VECTOR SPACES

Introduction : The theory of vector spaces developed out of the theory of
systems of linear equations. The characteristic property of vector spaces is an
operation on elements taken from different sets. Such an operation is called an
outer operation on two sets. A vector space is defined as a domain with two sets
and two operations. The rules for vector spaces are derived from the defining
properties. The defining properties and the rules together form the theory of vector
spaces. This section gives an introduction to the theory of vector spaces.

Outer operation : An outer operation f on the sets A and V assigns exactly one
element y of the set V to every pair (a, x) in the direct product A x V. Thus an outer
operation is a mapping f from AxV to V. To distinguish between the two sets,
elements in A appear in normal type, while the elements of V appear in boldface.

f: AxV—=V with fa,x) =y and x,yeV; acA
An operator symbol is often used instead of a letter to designate an outer opera-
tion. In this case, the mapping is represented as follows :

o: AxV—=V with aox =y and x,yeV;acA

Due to this representation, the set A is called the operator set. In the context of
vector spaces, the set V is called the set of vectors. In the outer operation aox, the
order of the elements a and x may be changed; the meaning of the expression is
unambiguous, since a € Aand x € V. Often the operator symbol o in the expression
aox is dropped, and one writes ax or x a instead.

Vector space : The domain (V; +) is called a vector space over the domain
(A; +,0) and is designated by (A, V ; +,0) if :

(1) The domain (V ; +) is a commutative group.
(2) The domain (A ; +, o) is a commutative field.

(3) Theoperationoin(A,V ; +, o) is an outer operation with the following proper-
ties for all elements a,be A and x,ye V:

associative: (@aob)jox = ao(box)
distributive : (@a+b)ox = aox + box
ao(X+y) = aox +aoy

identitive : 1,0X =X
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In the definition of vector spaces, the symbols + and o for addition and multiplica-
tion designate different operations in different domains.

(1) The symbol + inthe domain (V ; +) represents an inner operation in the set
V of vectors. The symbol + in the domain (A ; +, o) represents an inner
operation in the operator set A. The meaning of the symbol + in expressions
like a+b or x +y is determined by the membership of the operands in the
sets Aand V.

(2) The symbol o in the domain (A ; +, o) represents an inner operation in the
operator set A. The symbol o in the domain (A, V ; +, o) represents an outer
operation on the operator set A and the set V of vectors. The meaning of the
symbol o in expressions like aob or aox is determined by the membership
of the operands in the sets A and V.

The identity element of the addition + in the domain (V ; +) is called the zero
vector and is designated by 0. The identity element of the addition + inthe domain
(A;+,0) is called the zero element and is designated by 0, or 0. The identity
element of the multiplication o in the domain (A ; +, o) is called the unit element
and is designated by 1, or 1.

Rules for vector spaces : Besides the rules for the commutative group (V ; +)
and the rules for the commutative field (A ; +, o), the defining properties of a vector
space imply additional rules for the outer operation of (A,V ; +,0) :

(1) The outer operation o with the identity elements 0 and 0 of addition yields the
zero vector.

OoxX = X000 =0 ac0 =00ca=20

(2) The outer operation o applied to additive inverses obeys rules which are
called sign rules in the algebra of real vectors.
ao(-x) = (-a)ox = —(aox)
(-a)o(-x) = aox

(38) The vector space has no zero divisors with respect to the outer operation o,
so that aox =0 implies a=0 or x=0.
aocx =0 = a=0 v x=0

Proof : Rules for vector spaces

(1) By the first distributive law, aox +box =(a +b) o x. Substitutinga=b =0
yields 0o x +00x =00X. Adding —(0 o x) on both side yields —(0o x) +
(Oox+0+x)=(—00x+00x)+00x=00x on the left-hand side and
—(0:0%)+00X:=0-0nsthesright-hand side, so that 0ox =0 holds. The
invariance a o 0 = 0 is proved similarly using the second distributive law.
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(2) By the first distributive law, aox +box = (a+b)ox. Substituting b=-a
yieldsaoXx+(—-a)ox=(a+(-a))ox=00x=0.Furtheraox+(-a)ox=0
implies that (—a) o x is the additive inverse of a o x, thatis (—a) o X = —(a o X).
The validity of ao(—X)= —(aox) is proved similarly using the second
distributive law. For —a and -x, the two rules yield (-a)o(-X)=
—((-a)ox)= —(—(aoXx))=aox.

(3) Multiplying aox=0 for a=0 by a™' yields ao(aox)=(a'oa)ox=
10 x = x on the left-hand side and a~! o 0 = 0 on the right-hand side, so that
x=0.lfa=0,thenaox=0by (1). Hence aocx =0 impliesa=0 or x =0.

Linear combination : Vectors x,, X,,... are chosen from the set of vectors of a
vector space (A,V ; +, o) and multiplied by elements a,, a,,... of the operator set
A. The sum of the products a;oX; is called a linear combination of the vectors x;.
The elements a; are called the coefficients of the linear combination. The order of
the products in the sum is irrelevant, since vector addition is commutative. Every
linear combination yields a vector x of the set V of vectors. The notation for linear
combinations is simplified by introducing the symbol > for the summation and
dropping the symbol o in products.

x=a1ox1+a2c>x2+...=%aixi x,x,€V; aeA

Rules for linear combinations : The following rules follow from the defining
properties of a vector space and the definition of a linear combination :

(1) Scaling a linear combination
Alinear combination is scaled by a factor p € A by multiplying each coefficient
of the linear combination with p.
pX =p > a; X; = > (poai)xi

i€l i€l

(2) Sum of two linear combinations
Let two linear combinations with the coefficients a; and b; for the vectors x;
be given. The sum of the two linear combinations is formed by adding the
coefficients a; and b; for each vector x;.
X+y = Dax+ > bx =) (a+b)Xx

i€l i€l i€l

(3) Difference of two linear combinations
Let two linear combinations with the coefficients a; and b; for the vectors x;
be given. The difference of the two linear combinations is formed by subtract-
ing the coefficients a; and b; for each vector x;. The difference a; —b; is the
sum of a; and the additive inverse (-b;) of b;.
X—-y=>ax— >bx=>(a-b)x = > (a+(-b)) x

i€l i€l i€l i€l
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Linear closure : The set of all vectors which can be formed as a linear combina-
tion of a given subset X ={X,, X,,...} of the set V of vectors of the vector space
(A,V ; +,0) is called the linear closure (span) of X and is designated by L(X).

LX) := {xeV | x = Y a;x; A x,eX}
=

Generating set : A subset E of the set V of vectors is said to generate (span) the
vector space (A,V ; +, o) if V is the linear closure of E.

E generates (A,V ; +,0) = ECcV A V =LE)

The set V of vectors is always a generating set, since L(V) = V. A generating set
E is said to be finite if E is a finite subset of the set V of vectors. A vector space is
called a vector space of finite type if it has a finite generating set. The generating
set of a vector space is not unique.

Linear independence : A subset X of the set V of vectors of a vector space
(A,V; +, o) is said to be linearly independent if the choice a; = 0 for the coefficients
is the only way to represent the zero vector 0 as a linear combination of the vectors
X;. Otherwise, X is said to be linearly dependent.

>ax=0 = A (a=0) a; €A, xeV
i€l i€l

Basis of a vector space : A subset B of the set V of vectors is called a basis of
the vector space (A,V ; +,0) if B is a linearly independent generating set. The
vectors x; of a basis are called basis vectors. A basis is said to be finite if the
number of its basis vectors is finite. Otherwise, it is said to be infinite.

Construction of abasis : Everyvectorspace (A,V ; +, o) has a basis. A basis B
may be constructed step by step from a generating set E C V of the vector space :

(1) Before the first step, the set B is empty.

(2) Inevery stepi, a vector x;= 0 of the generating set E is added to the set B
such that B ={x,..., X;_;, X;} is linearly independent.

(3) Ifthe set B cannot be further enlarged after a finite number of steps, then B
is a finite basis of the vector space. Otherwise, B is an infinite basis of the
vector space.

The choice of the vector added to the basis in a step is not unique. Hence the
constructed basis is not unique.
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Properties of bases : A vector space (A,V ; +, o) has the following properties
with respect to its bases :

(1) Every vector of a vector space has a unique representation as a linear com-
bination of the basis vectors of a basis.

(2) Finite bases of a vector space contain the same number of basis vectors.

Proof : Properties of bases

(1) Let a vector x of the vector space with the basis B be represented by two
linear combinations of the basis vectors x; B. Then the difference of the two
linear combinations is the zero vector 0.

X = ) aXx, a, €A
i€l

X = > b x b,eA
i€l

0= > (a-b)x = > ¢x c;eEA
i€l iel

All coefficients ¢; = a; — b; are 0, since the basis vectors are by definition
linearly independent. Hence a; = b;, and the two linear combinations for the
vector x are identical.

(2) Let B;={xy,.., X5} be a finite basis with s basis vectors, and let B, =
{¥1. Vs> ¥s4 1 } be afinite basis with s + 1 basis vectors. Then by (1) each
basis vector y;e B, has a unique representation as a linear combination of
the basis vectors x;& B,. This leads to the following system of equations :

Vi = a; Xy o+ o+ agX
Yo = agX; o+ ..+ ag X
Yse1 = Bgyp1 Xy T oo F Bgpq X

In the i-th equation, at least one coefficient a,, is non-zero. The i-th equation
is used to eliminate x in all other equations. Then the system of equations
is reduced by x, and the equation i.

None of the left-hand sides of the reduced system of equations is 0, since the
basis vectors y; are linearly independent. There is no reduced equation in
which all coefficients on the right-hand side are zero, since the basis vectors
X, are linearly independent. The right-hand side takes the value 0 only when
allbasisvectorsyx=shavebeenseliminated. The elimination is repeated until
all basis vectors x,, have been eliminated.
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After the elimination of all basis vectors X, the reduced system consists of
a single equation. Let this be the p-th equation of the original system. Then
the left-hand side of this equation is a linear combination of the basis vectors
y; in which y,, still has the coefficient 1. This linear combination is non-zero
by definition. This contradicts the fact that the right-hand side of the equation
is 0. Hence the number of basis vectors in B, is not greater than in B,.

An analogous argument shows that the number of basis vectors in B, is not
greater than in B,. Hence the number of basis vectors in B, and B, is equal.

Rank of a vector space : A vector space is said to be of infinite rank if a basis
of the vector space is infinite. A vector space is said to be of rank m if a basis is
finite and contains m basis vectors.

Vector subspace : Let (A,V ;+,0)and (A,W ; +, o) be vector spaces over the
same commutative field (A ; +,0). The vector space (A,W ;+,0) is called a
(vector) subspace of (A,V ; +, o) if W is a subset of V.

Basis and rank of a subspace : Let the vector space (A,W ; +, o) of rank my,
be a subspace of the vector space (A,V ; +, o) of rank m,,. From W C V itfollows
directly that my,, < m,,. The method for the construction of a basis shows that the
basis B,y can be extended stepwise to a basis B,, of V. Hence there are bases
Bw and B, for which B, C B,,.

Example 1 : Vector space of complex numbers

The additive domain (C ; +) of complex numbers is a vector space of rank 2 over
the commutative field (R ; +, o) of real numbers, as demonstrated in the following.

(1) Acomplexnumber x € C is represented in the form x, +i x; with the real part
X, € R and the imaginary part x; € R. The real part and the imaginary part are
real numbers. Two complex numbers are added by adding the two real parts
and the two imaginary parts separately.

complex number X = (X, +ix)eC Xy, X, €R
addition (X +i%) + (y+iy) = (X +y)+i(x+y;)

The addition of complex numbers is associative and commutative. The com-
plex number (0 +i 0) acts as the identity element under addition. For every
complex number x, +i x; there is a complex number ((—x,) +i(—x;)) that is
its additive inverse. The additive domain (C ; +) with these properties is a
commutative group according to the definition in Section 3.3.2.

(2) According to Section 3.4.2, the additive and multiplicative domain (R ; +, o)
of real-numbersis.a.commutative-field with the zero element 0 and the unit
element 1.
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A complex number is scaled by a real number a € R by separately multiplying
the real part and the imaginary part by a.

scaling ao(x, +ix;):= ((ax;)+i(ax)) aeR

The scaling operation is the outer operation o on the sets R and C. It satisfies
the defining properties of a vector space. That is, fora,beR and (x, +i x;),
(y, +iy;)€C, the following properties hold :

associative  (aob) o (X, +iX;) = ao(bo(x,+ix))

distributive  (a+b)o (x,+ix;) = ao(X,+ix;) + bo(x +ix;)
ao((x,+ix) + (y,+iy) = ao(x, +ix;) +ao(y,+iy;)

identitive To(x, +ix) = (x,+ix)

With properties (1), (2), (3) the domain (R, C ; +, o) has the defining proper-

ties of a vector space. Every complex number is a vector of this vector space.

The vector space (R, C ; +, o) of complex numbers has rank 2. Every basis
of the vector space contains exactly two non-zero complex numbers, which
are linearly independent. The following examples show two different bases.
first basis : {1,i}

second basis : {A+i), (1 —-i)}

Example 2 : Vector space of real polynomial functions

The additive domain (P, (x) ; +) of real polynomial functions of degree nis a vector
space of rank n + 1 over the commutative field (R ; +, o) of real numbers. This is
demonstrated in the following.

(1)

A real polynomial function p(x) € P,(x) of degree n depending on the vari-
able x is defined as follows :

n
real polynomial function p(x) = > ¢, xK X, p(x) eR
k=0
coefficient of the k-thterm : ¢, eR
degree of the polynomial : neN

To simplify the notation, the index k=0,...,n on the summation symbols is
dropped in the following. Two real polynomial functions are added by adding
the coefficients for each term xX separately.

addiion Y ¢, xK + Y dx¥ = ¥ (¢ +d,) x

The addition of real polynomial functions is associative and commutative.
The zero polynomial > 0 x¥ acts as the identity element under addition. For
every polynomial function 3 ¢, xX there is a polynomial function 3’ (—c,) x*
whichris-its-additive-inverse=-According to the definition in Section 3.3, the
additive domain (P,(x) ; +) is'a commutative group.
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(2)

©)

(4)

(5)

According to Section 3.4.2, the additive and multiplicative domain (R ; +, o)
of real numbers is a commutative field with the zero element 0 and the unit
element 1.

A real polynomial function is scaled by a real number aeR by multiplying
each coefficient by a.

scaling aoy ¢ X< = Y(ac,)x* acR

The scaling operation is the outer operation o on the sets R and P(x). It
satisfies the defining properties of a vector space. That is, for a,beR and
> ¢ XX > d, xke P (x) the following properties hold :

associative (aob) o > ¢, x¥ = ao(bo Y ¢, x¥)
distributive  (@+b) o > ¢, x* = ao ) ¢, xk + bo Y ¢, x

ao(X e xk + X d xK) = aoY c xk + a0 d x
identitive 10 X ¢, xk = Y ¢, xK
With properties (1), (2), (3) the domain (R, P, (x) ; +, o) has the defining prop-
erties of a vector space. Every real polynomial function of degree n is a vector

of this vector space.

The vectorspace (R, P,(x) ; +, o) of real polynomial functions has rankn + 1.
It possesses a basis consisting of the n + 1 basis functions x¥ for k =0,...,n.
Every real polynomial function of degree n is a linear combination of these
basis functions with real coefficients.

basis : {x0, x' ..., x"}
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3.5.2 REAL VECTOR SPACES

Introduction : A real vector space is a special case of a general vector space.
The characteristic property of a real vector is that it is represented as an n-tuple
of real numbers. Addition and multiplication of real numbers are applied to real vec-
tors elementwise. This leads to the theory of real vector spaces.

Real vector : A vector is called a real vector of dimension n if it is an n-tuple
(X4, Xy ,...,X,) with the elements x;eR. The set of all real vectors of dimension
n is the n-fold cartesian product R".

Real vectors of dimension n are usually not represented in the n-tuple notation.
Instead, the elements x; of a vector x are arranged in a column, the index of the
element being used as a row index. This representation is called a column vector.
X4
X3

Real vector addition : Two real vectors of equal dimension are added by adding
the elements with the same index. The additive structure (R ; +) of the real num-
bers thus carries over elementwise to real vectors.

X4 Y4 X1+,

Xp Y2 Xp +Yo
X+y = . + . =

Xn Yn Xn + Yn

The addition -+ is an inner operation in the set R" of n-dimensional real vectors.
By Section 3.3, The additive domain (R" ; +) satisfies all defining properties of a
commutative group :
(1) The addition is associative, since for x,y, zeR" :

x+y)+z = x+(y+2)
(2)—The.addition.is.commutative,.since for x, ye R" :

X+y = y+Xx
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©)

(4)

The zero vector 0, whose elements are all 0, acts as an identity element un-
der addition, since for 0, xeR" :

X+0 = 0+x = x
For every real vector x there exists a vector —x which is its additive inverse,

sothatx + (—x) = 0. The vector —x contains the elements of the vector x with
opposite signs.

Real vector scaling : A real vector is scaled by a real number a R by multiply-
ing each element of the vector by a. The multiplicative structure (R ; o) of the real
numbers thus carries over elementwise to real vectors.

X4 axy
Xo axXy
— —

Xn axnp

The scaling operation is an outer operation on the set R of real numbers and the
set R" of n-dimensional real vectors. It has the following properties :

M

(@)

3)

The scaling operation is associative, since for a,beR and xeR" :
(acb)ox = ao(box)

The scaling operation is distributive, since for a,be R and x,yeR" :
(@+b)ox = aox + box

ao(X+y) = aox + aoy

The scaling operation is identitive, since for 1eR and xeR" :
1oX = X

Complete real vector space : The additive domain (R" ; +) of n-dimensional
real vectors is a vector space over the commutative field (R ;+, o) of real
numbers. This vector space is called the complete n-dimensional real vector space
and is designated by (R,R" ; +, o). It has the defining properties of a vector space
specified in Section 3.5.1 ;

(1)

(2)

(3)

The domain (R" ; +) is the infinite set of n-dimensional real vectors with the
vector addition + as an inner operation. It is a commutative group.

The domain (R ; +, o) is the infinite set of real numbers with the addition +
and the multiplication o as inner operations. It is a commutative field.

The vector scaling operation o is an outer operation on the infinite sets of real
numbers and of n-dimensional real vectors. It is associative, distributive and
identitivesThus:it-has:the:defining;properties of the operation o of a vector
space.
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Real unit vectors and canonical basis : A vector of the complete n-dimensional
real vector space is called a canonical unit vector and is designated by e; if it con-
tains the unit element 1 of the commutative field (R ; +, o) of real numbers at posi-
tioniandthe zero element 0 at all other positions. The set{e,, e, ,..., e} of canon-
ical unit vectors is called the canonical basis (standard basis) of the complete n-
dimensional real vector space. Every n-dimensional real vector xeR " is a linear
combination of the n canonical unit vectors with the elements x; as coefficients.

][] o] [x
1

0 Xo

o] Lo BN

General basis and rank : The canonical basis with the n unit vectors is a special
basis of the complete n-dimensional real vector space. According to the general
rules in Section 3.5.1, all finite bases of a vector space contain the same number
of basis vectors. Thus every basis of the complete n-dimensional real vector space
contains exactly n basis vectors. Hence the complete real n-dimensional vector
space has rank n.

Coordinates of a real vector in a basis : Letabasis B={v,, v,,...,v }and
a vector x of a complete n-dimensional real vector space be given. The vector x
has a unigue representation as a linear combination of the basis vectors of B. The
coefficients of this linear combination are called the coordinates of the vector x in
the basis B.

Viy Vi2 | Vin X4
n Va1 Va2 Von X2 7
X = > gV, = a, + a, + ..+ a, =
i=1
\_,j E—
Vi1 Vh2 Von Xp

Vi

I
g

element k of the basis vector v,
coordinate of the vector x for the basis vector v;
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To determine the coordinates a; of the vector x in the basis B, the above linear

combination is written in rows. With a; v; = v,a;, this leads to a system of n linear

equations for the unknown coefficients a,, a, ,...,a,.

Vigay + Vypay + ..+ vypa, = X
Vog@y + Vg @y + .ot Vppa, = X,
Var@y + Vo a, +..+ Vpa, = X,

Due to the linear independence of the n basis vectors, this system of equations
possesses a unique solution a4, a, ,...,a, for the coordinates of the vector x in
the basis B. The coordinates a; are assembled in a vector a. The vector a is called
the coordinate vector of the vector x in the basis B.

Example 1 : Real three-dimensional vector space

vectors x, y eR3

X = y =
vector addition x +y vector subtraction x +(-y)
1] o] 1] (2]
2 = |3 2 = |1
! °] 1 s
vector sc = Xo2 vector scaling (-2) oy = yo(-2)
K 2] E =]
2102 = |4 1o (2) = [|-2
K | o 5|
L [~ | [ | " |

canonical basis and linear combination x = x;e, + x, e, + X3e,

1| el o]
+2[1]+1]o0
o 1

= 1

_‘NH
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Example 2 : Coordinates of a vector

The vectors {v,,V,, V5 } shown below form a basis of the vector space R3. The
coordinates {a,, a,, a5} of the vector x in this basis are determined by solving
the system of equations a v, + a,v, + a3V = X.

4a, + a, — az =12 a; = 5

a; +2a, + ag =

|
~
ot
n
I
1
N

—ay + a, +4a; =17 a; = 6
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3.6 LINEAR MAPPINGS

Introduction : The study of the properties of vector spaces requires a definition
of the concept of "vector spaces with identical structure”. Two vector spaces are
identically structured (isomorphic) if there exists a bijective mapping between
them which preserves structure (is homomorphic) in both directions. Homo-
morphic mappings of vector spaces are called linear mappings.

Matrices are introduced to define the mapping rules of linear mappings. Matrices
of the same dimension with the inner operation of matrix addition and the outer op-
eration of matrix scaling form a vector space. The composition of linear mappings
leads to the concept of matrix multiplication.

Linear mapping : Let(A,V;+,0) and (A, W+, o) be vector spaces over the
same commutative field (A ; +, o). The vector sets V and W with their inner and
outer operations may be different. A mapping f : V — W with f(v) =w is called a
linear (homomorphic) mapping from the vector space (A, V ; +, o) to the vector
space (A, W; +, o) if for all vectors x, y € V and for all a € A the order in which the
operation and the mapping are applied may be changed without changing the
result :

inner operation f(x+y)
outer operation f(a o x)

f(x) +1(y)
a o f(x)

il

The defining properties of a linear mapping imply that the image of a linear combi-
nation with coefficients a; € A and vectors x; € V is equal to the linear combination
of the images f(x;) with the same coefficients a,.
linear combination (> a; x;) = > af(x,)
i€l i€1

Image space of a linear mapping : A linear mapping f: V — W maps a vector
space (A, V; +, o) to a vector space (A, W ; +, o). Every vector x e V is assigned
a unique image f(x) € W. The set of the images f(x) for all x e V is called the image
of V under f and is designated by f(V). The image of V is a subset of W, since there
may be vectors ze W which have no preimage in V. The domain (A, f(V) ; +, o)
is a vector space and is called the image space of (A, V ; +, o) with respect to the
linear mapping f (the vector space induced by f). Since f(V) C W, the image space
(A, f(V) ; +, o) is a subspace of the vector space (A, W ; +, o).

image f(V) := {f(x) | xe V}
image space (A, f(V) ;+, o)
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Linear mapping rule : Let B be a basis of a vector space (A, V ; +, o) of rank m
with the basis vectors vy,...,v,. Then every vector x € V has a unique representa-
tion as a linear combination of the basis vectors.

m
B ={v..Vpl} X = > av

A linear mapping f : V — W maps the basis B to an image f(B) consisting of the
images f(v,),....f(v,) of the basis vectors. Since the mapping f is linear, the image
f(x) is determined as a linear combination of the images of the basis vectors.

f(B) = {f(vy),....,7(vy)} f(x) = i=§1 a; f(v;)

Hence a linear mapping f : V — W is uniquely determined by the images of the
basis vectors of a basis BCV. The image f(B) spans the image space
(A, f(V); +, o), since every element f(x) of the image f(V) is a linear combination
of the vectors of f(B). The image f(B) is, however, not necessarily a basis, since
the vectors of f(B) may be linearly dependent.

Image basis of a linear mapping : Let (A, V; +, o) be a vector space, and let
f:V— W be a linear mapping which induces the image space (A, f(V); +, o).
A basis F ¢ f(V) of the image space is called an image basis of the linear mapping.
According to the definition in Section 3.5.1, the rank of the image space is equal
to the number of vectors in the image basis.

Construction of an image basis : Let the image f(B) of a basis B of a vector
space (A, V ; +, o) under the linear mapping f : V — W be given. Then f(B) spans
the image space f(V). An image basis F may be constructed from the generating
set f(B) using the method described in Section 3.5.1.

Defect of a linear mapping : Let a vector space (A, V;+, o) of rank m be
mapped to an image space of rank r by a linear mapping f : V — W. Then the
construction of the image basis yields r < m. The difference d =m —r s called the
defect of the linear mapping f.

Types of linear mappings : Let a vector space (A, V; +, o) of rank m and a
vector space (A, W ;+, o) of rank n be given, along with a linear mapping
f: V — Wwhich induces an image space (A, f(V); +, o) of rank . A linear mapping
is injective, surjective or bijective, respectively, if and only if :

(1) fisinjectve « r=m
(2) fissurjective < r =n

(3) fisbijective <& r=m =n
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Proof : Types of linear mappings

The vector space (A, V ; +, o) has a basis B which contains exactly m linearly inde-
pendent basis vectors v,,...,v,, € V. Every basis vector v,e V is mapped to an
image f(v;) € W. Since the image space is of rank r, exactly rimages of the basis
vectors are linearly independent. They form an image basis F of the image space
(A, f(V) ; +, ). Let the basis vectors v,,...,v, be chosen such that their images
f(v4),...f(v;) form an image basis.

N
<

basis B={vy.uV,,Vy}

N

image basis  F = {f(v,),...,f(v,)} fv) c W

(1) Letthe mapping f be injective. Then two different vectors x =y of V have two
differentimages f(x) = f(y) in W. The zero vector 0,, € V is mapped to the zero
vector 0,, € W. Every basis vector v; = 0, is mapped to an image f(v;) = 0.
Every linear combination " a; v; with coefficients a, = 0 differs from the zero
vector 0,,. Its image is the linear combination >’ a;f(v;) = 0,y. Therefore the
images f(v;) of all basis vectors v, are linearly independent, and hence the
rank r is equal to the rank m.

Conversely, let the rank r be equal to the rank m. Then the images f(v;)eWw
of all basis vectors v;c V are linearly independent. This implies that for two
different vectors x = " a; v;and y = 3’ b; v; of V the images . a,f(v;) and
> b, f(v,) are also different. Hence the mapping f is injective.

(2) Let the mapping f be surjective. Then every vector ze W has a preimage
x € V with z =1(x), and hence (V) = W. Every image basis F is a basis of the
image space (A, f(V) ; +,0), and thus a basis of the vector space (A, W; +,0).
Hence the rank r is equal to the rank n.

Conversely, letthe rank r be equal to the rank m. Then every basis of the vec-
tor space (A, W; +, o) is an image basis of the image space (A, f(V) ; +, o).
Two vector spaces with the same basis are identical. Thus W = f(V), and
hence the mapping f is surjective.

(3) A mapping is bijective if it is both injective and surjective. By (1) and (2), this
is the case if and only the rank r is equal to the rank m and to the rank n.

Isomorphic vector spaces : Two vector spaces (A, V ; +, o) and (A, W; +, o)
are said to be isomorphic if there is a bijective linear mapping f : V — W. Iso-
morphic vector spaces have the same algebraic structure. They differ only in the
meaning of the set of vectors and of the vector operations. Two vector spaces of
finite rank over the same domain (A ; +, o) are isomorphic if and only if they are
of equal rank. Every vector space (R , V ; +, o) of rank n over the field (R ; +, o)
of real.-numbers;is isomorphic;to.the.complete n-dimensional real vector space
(R,R"; +, o).
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Example 1 : Complete two-dimensional real vector space

The vector space (R, C ; +, o) for the addition of complex numbers over the field
(R ; +, o) of real numbers is treated in Example 1 of Section 3.5.1. It is isomorphic
to the complete two-dimensional real vector space (R, R? ; +, o), since there is
a bijective linear mapping f: C — R?.

(1) Every complex number x, +ix;€ C corresponds to a pair (X, X;) € R2 with
the real part x, € R and the imaginary part x; € R. This pair corresponds to a
two-dimensional real vector. This one-to-one correspondence is a bijective
mapping f:C —R?2.

f:C>R2

fix) = r X :=x t+ix; €C =

(2) The mapping f has the defining properties of a linear mapping :

fx +y) = f(x) +1(y)

|

f(aoX)=aof(X) oa

(3) Since the mapping f is bijective and linear, every basis B C C corresponds
to a basis f(B) e R2. This is demonstrated for two examples :

-]

2] [=]=]

N
A
N

B={1,i}

N

(@]

E
1

0
\_ L
1

B={1+i1-i} C C R?

N
@
3

Il

aa}

Matrix of a linear mapping : Let a vector space (A, V ; +, o) of rank m, a vector
space (A, W ; +, o) of rank n and a linear mapping f : V — W be given. Every basis
vector v,e V of abasis B,, C Vis mappedto animage f(v,) € W. Then every image
vector f(v;) has a unique representation as a linear combination of basis vectors
w, € W of a basis B,, ¢ W with coefficients a; € A

f(v;) = ki a8y Wy i=1,..,m
=1
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The coefficients a; are arranged in a rectangular scheme, using the first index as
arow index and the second index as a column index. This scheme is called a matrix
scheme. The coefficient a; appears in row i and column k of the matrix scheme.

aq1| - |8y | Byne— 1
A = %] &Kk &~ i
am1 . amk amn<— m

—
==
]

1 n
row dimension : m column dimension : n
row index i=1,2,.,m column index tk=1,2,.,n
row i D (85 @) column k D (A @)

An m.n-tuple with elements a; € A is called a matrix and is designated by an
uppercase letter in boldface. The set of all matrices with row dimension m and
column dimension n is the m-n-fold direct product A™x A", which is designated
by Ap, - Amatrix A is said to be quadratic if its row dimension is equal to its column
dimension. A matrix is said to be real if its elements are real numbers.

Matrix addition : Two matrices A,Be A, , are added by adding elements that
have the same indices. The additive structure (A ; +) thus carries over to matrices
elementwise.

C=A+B with ¢, := a; + by, i=1..m;k=1..n

The addition + is an inner operation in the set A, , of matrices. The additive
domain possesses the defining properties of a commutative group specified in
Section 3.3 :

(1) The addition is associative, since for A,B,Ce A, :
(A+B)+C = A+(B+C)
(2) The addition is commutative, since for A,Be A, -
A+B =B+A
(3) The zero matrix 0, whose elements are all 0, acts as an identity element
under addition, since for 0,A€ A :
A+0=0+A=A
(4) For every matrix A there exists an additive inverse —A such that

A+ (=A)=0lf the elements,of the matrix A are a, € A, then the elements
of the matrix — A are the additive inverses — a, € A.
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Matrix scaling : A matrix A€ A, is scaled by a number ae A by multiplying
each element of the matrix by a. The algebraic structure (A ; o) thus carries over
to matrices elementwise.

B =aocA = Aca with by, = aa i=1,.m;k=1,..n

The scaling operation is an outer operation on the set A and the set Ay, of
matrices. It has the following properties :

(1) The scaling operation is associative, since fora,be Aand Ae A, ;-
(aob)oA = ao(boA)

(2) The scaling operation is distributive, since fora,be A and A,Be A :
(a+b)oA = aoA + boA
ao(A+B) = aoA + aoB

(3) The scaling operation is identitive, since for 1€ A and A A :
1cA=A

Vector space of matrices : The additive domain (A, , ; +) of matrices with row
dimension m and column dimension n over the commutative field (A ; +, o) is des-
ignated by (A, A, ; +, o). Itis a vector space of rank m - n which has the defining
properties required in Section 3.5.1 :

(1) The domain (A, ; +) is a commutative group.
(2) The domain (A; +, o) is a commutative fieid.

(8) The outer operation o on the sets A and A, |, is the scaling operation. It is
associative, distributive and identitive.

For each j=1,...,m and each q=1,...,n the canonical basis of the vector space
(A, A s +, o) contains the matrix A, , whose elements a; are 1fori=jandk=q
and 0 otherwise. Thus the vector space has rank m-n.

Example 2 : Linear mapping

Let a vector space (R, V ; +, o) of rank 2 with the basis vectors v, v,V C R3
and a vector space (R, W ; +, o) of rank 2 with the basis vectors w,, w,e W C R4
be given. The two vector spaces are isomorphic. The bijective mappingf:V — W
is defined by a quadratic matrix AER 5 ,.
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<
I
[ 2] ~]
m<
[
>
I

=
i
o[ ~~]~]

To determine the image f(x) € V of a given vector xe V, the vector x is first ex-
pressed as a linear combination of the basis vectors v, and v, with the coefficients
a, and a,. Then the images of the basis vectors v, and v, are calculated using
the matrix A. The image f(x) is the linear combination of the images f(v,) and f(v,)
with the coefficients a; and a,.

Llelelz] [+ls[-lo] [defal-]
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Composition of linear mappings : Let the vector spaces (A, U;+, o),
(A, V;+,0)and (A, W; +, o) with ranks m, n, s and basis vectors u; € U, v, €V,
w,e W be given, as well as mappings f : U—=V and g : V — W. Every image
f(u;) € V has a unique representation as a linear combination of the basis vectors
v, € V with coefficients a; € A. Every image g(v, ) € W has a unique representa-
tion as a linear combination of the basis vectors w, € W with coefficients b, .

1l
I V)=
o
=
<
=
Il
—
3

f(u;)

S
g(vy) = 21 by, W, k=1,.n
r=
The composition of the linear mappings g and f is a linear mapping gof: U — W.
Every image g(f(u; )) € W has a unique representation as a linear combination of
the basis vectors w, € W with coefficients ¢, € A.

g(f(u)) = k; a 9(vy) = k; r; aj by, Wy
gf(w)) = 21 Ciy W; iy = k; ay by,

Matrix multiplication : The matrix C foracompositiongof: U — W is called the
product of the matrices A and B for the mappings f: U -V andg:V — W. The
product of A and B is designated by A o B. Often the symbol o is dropped and the
product is designated by AB. The product of A and B is only defined if the column
dimension of A and the row dimension of B coincide.

C = AoB AcA,, BeA  CeA

n
c, = k; ay by, i=1..m; r=1..8s

Matrix multiplication allows a convenient graphical representation. The following
example shows the calculation of the coefficient c; of the matrix C using row i of
the matrix A and column r of the matrix B. Coefficients a;, and b, . with the same
index k are multiplied. The products are summed.
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1 r s
Y Y Y
A o B = C 1 - b” h" b'lS B
[ b-:1 bkr b'«s
1 k n '
‘-l b:’ﬂ bn! bﬂS
Y Y Y
1 — a8 a4k @10 || C11 Cis
= i1 i in Cir
A m = @mi Amk 8nn || Cm1 Crs c

In the general case, the multiplication of two matrices is an outer operation on the
sets A, , and A with the target A, .. In the case of quadratic matrices with
m=n=r, it is an inner operation in the set A, . The multiplicative domain

(Amms ©) has the defining properties of a semigroup with identity element specified

in Section 3.3.

(1) The multiplication is associative, since for A, B, C :
(AoB)oC = Ao (BoC)

(2) The identity matrix I, whose elements a;; are 1 for i=j and O for i =j, acts
as the identity element under multiplication, since for I, Ae A, . :
Aol =1cA =A

Ring of matrices : The additive and multiplicative domain (A, ,; +, o) of qua-
dratic matrices is a ring with the defining properties specified in Section 3.4.2 :
(1) The domain (A, ,; +) is a commutative group.

(2) The domain (A, ,,; o) is a semigroup.

(3) The multiplication o is distributive with respect to the addition +, since for
A,B,CcA,,:

Aoc(B+C) = AocB+AoC
(A+B)oC AoC+BoC
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Thering (Ay, 5 +, o) is aring with identity element, since the identity matrix I acts
as an identity element under the multiplication o. However, the ring contains zero
divisors, since A o B =0 does not imply A=0or B =0.

Example 3 : Composition of linear mappings

Let the real vector spaces of dimensions 2,3,4 with the sets R?, R3, R* of vectors
be given. Let the matrix of the linear mapping f : R2 — R3 be AcR 23, andletthe
matrix of the linear mapping g:R® - R be BER 5, . The matrix Ce R, ,of the
composition gof:R? —R* is calculated as the product C =A o B.

L
N
-
-
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3.7 VECTOR AND MATRIX ALGEBRA

Introduction : Vector and matrix algebra has many applications in the formulation
and solution of geometric, physical and technical problems. It developed out of the
theory of systems of linear equations. The basic theory is treated in a general form
in the preceding sections on vector spaces and linear mappings. This section
builds on that basis and presents the elementary definitions, operations and rules
for real and complex vectors and matrices which are important in practical applica-
tions.

3.7.1 DEFINITIONS

Scalar : A quantity is said to be scalar if it is described by exactly one value. Real
and complex scalars are considered in the following.

Vector : An n-tuple of elements is called a vector of dimension n and is desig-
nated by a lowercase letter in boldface. A vector is said to be real if all its elements
are real. A vector is said to be complex if all its elements are complex. The ele-
ments x; of a vector x are arranged in a column by using the index of the element
as a row index. This representation is called a column vector.

X4

X =| X [« rowi

Xn

Special vectors : A vector is called a zero vector and is designated by 0 if all of
its elements are 0. A vector is called a canonical unit vector and is designated by
e, if the element x, is 1 and all other elements are 0. Canonical unit vectors are
represented using the Kronecker symbol 9, , which has the value 0 for i =k and
the value 1 fori=k.

zero vector 0 X =0 i=1,..,n
unit vector e, S
Kronecker symbol : &, =1 for k=i
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Matrix : Anm-n-tuple of elements is called a matrix with the dimensions m, n and
is designated by an uppercase letter in boldface. A matrix is said to be real if all
of its elements are real. A matrix is said to be complex if all of its elements are
complex. The elements a; of a matrix A with the dimensions m, n are arranged in
a rectangular scheme with m rows and n columns by using the first index as a row
index and the second index as a column index. The elements a; are called
diagonal elements for i = k and non-diagonal elements for i = k. A matrix is said to
be quadratic if the row dimension and the column dimension coincide.

49| -+ |89k| - |B4n
A = |[&1] 8| |8p l«— rOW i
Ant| - |8mk| - Bmn
Tcolumn k
m row dimension
n column dimension
m=n quadratic matrix
Ay diagonal element
a non-diagonal element for i = k

Special quadratic matrices : Some designations for matrices with special pat-
terns of elements are defined in the following. In the graphical schemes, zero ele-
ments are represented by empty squares and elements with an arbitrary value are
represented by shaded squares.

zero matrix : ol-~lol-l0
o=1|of-]0O|~-]0O Xje °= 0

A matrix is called a zero matrix if all of its elements are 0.
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identity matrix : 1

1

A matrix is called an identity matrix if all of its diagonal
elements are 1 and all of its non-diagonal elements are 0.

diagonal matrix : ' i

D= P [ ] x=0 for i=k

A matrix s called a diagonal matrix if all of its non-diagonal
elements are 0.

lower triangular matrix :

L= X =0 for i<k

A matrix is called a lower triangular matrix if all elements
above its diagonal are 0.

upper triangular matrix :

Xy =0 for i>k

1'
i 1

A matrix is called an upper triangular matrix if all elements
below its diagonal are 0.
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3.7.2 ELEMENTARY VECTOR OPERATIONS

Equality : Two vectors u and v are equal if they have the same dimension n and
elements with the same indices are equal.

Addition and subtraction : Two vectors u and v can only be added or sub-
tracted if they have the same dimension n. The addition + and the subtraction —
are carried out by adding and subtracting, respectively, the elements with identical
indices.

w=u-+yvV W :

i u; + v, i=1,.n

wW=u-YV W, .

| U — v, i=1,.,n

Scaling : A vector u is scaled by a scalar ¢ by multiplying each element of the
vector by c.

v =cu v, = cy; i=1,..,n

Rules for vector operations : The rules for the elementary vector operations
follow from the theory of vector spaces :
(1) Vector addition is associative and commutative.
(Uu+v) + w=u+(v+w)
u+v =v+u
(2) Vector scaling is associative, and it is distributive with respect to addition.
(abju = a(bu)
(a+b)u
a(u+v)

au+bu

au +av

(3) For the zero vector 0 and the scalars 0O and 1 :

u+0 =u iu = u

u-u =0 Ou =20 a0 =0

From au =0 it follows thata=0 oru=0.
Scalar product : The scalar product of two vectors u and v can only be formed
if the two vectors have the same dimension n. The scalar product is designated

by uov or by uTv. The result of a scalar product is a scalar s, which is calculated
as follows :

n
S =uov := u'v s := > uv
=1
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Dyadic product : The dyadic product of a vector u of dimension m and a vector
v of dimension n is a matrix P of row dimension m and column dimension n. It is
designated by uv' and is calculated as follows :

P=uvl Py = UV, i=1,..m; k=1..,n

Graphical representation : The scalar product u'v and the dyadic product
uv', which are special cases of the general matrix product, may be represented
graphically. The vectors u” and v are called transposed vectors of u and v. The
elements of a transposed vector are arranged in a row by using the index of the
element as a column index. Transposed vectors are therefore also called row
vectors. The following example shows the graphical representation of the calcula-
tion of the scalar product and the dyadic product.

V[ ] T

M Pik
Vv
u' [ "]
ui - [ [ol[ 5] P
scalar product s = u'v dyadic product P = uv’

Rules for scalar products : The definition of the scalar product implies the fol-
lowing rules for real vectors :

(1) The scalar product is commutative.
UoV = Vol

(2) The scalar product is distributive with respect to vector addition.
Uo(V+Ww) = uov + uow

(3) The scalar product is associative with respect to vector scaling.
(cu)ov = c(uov)

(4) The scalar product u o u is positive for u =0.
ucu >0 for u=20

Orthogonal and orthonormal vectors : Two real non-zero vectors u and v are
said to be orthogonal if the scalar product u o v is zero. They are said to be ortho-
normal if the scalar product u o v is zero and the scalar products u o uand vo vare
one.

uandv are orthogonal < uov=0 A u=0 A vzD

u and v are orthonormal < uUov =0 A UoU=1 A Vov =1
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Examples : Scalar products
Let real vectors X, y of the three-dimensional space R 2 be given :

The scalar products xoX, yoy, xoy are calculated as follows :

XoX = X'x = 1-1 +2.2+1:1 = 6
yoy =yly = (-1):(-1) + 1-1 + 4.4 =18
Xoy = x'y=1-(-1) +2-14+1.4 =5

The positive square root of the scalar product x o x is called the length of the vector
x. It is a norm (see Section 3.7.4) and is designated by |x|. The lengths of the
vectors x and y are calculated as follows :

IX| = /xox = /6 = 2449
vl = Jyoy = /18 = 4243

A vector is normalized with respect to its length by scaling it with the reciprocal of
its length. The normalized vectors x,, y, are calculated as follows :

0.408

Xy = X/ |x| = \/1—6)( = | 0816 Xyoxy = 1
0.408
—0.236

yw=Y/lyl = —/31:8\/ = | 0236 ynoyy = 1
0.943

The angle y between the vectors x and y is calculated from the scalar products
according to the cosine rule of trigonometry :

cosy = Xoy _ Xoy

Xl J(xex)(yoy)

o
IA
-2
IA
=

cosy = 5 0.481

/6 -18

y = arc cos 0.481 1.069
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From two vectors x and y, a linear combination z =0 is to be formed which is
orthogonal to x, so that xoz =0. It is assumed that xox = 0.

z = ax+by

Xoz = Xo(ax+by) = a(xox)+b(xcy) = 0

a = —bxoy
XoX
= —pXo¥ = _Xey
z bx°xx+by b(y x°xx)

The vector z is not uniquely determined, since b may be an arbitrary non-zero real
scalar. Forb=1:

Xoz =0
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3.7.3 ELEMENTARY MATRIX OPERATIONS

Equality : Two matrices A and B are equal if they have the same row dimension
m and the same column dimension n and the elements with identical indices are
equal.

n
/2\1 (8= by)

>

Il

w

¢
>3

i=1 k
Addition and subtraction : Two matrices A and B can only be added or sub-
tracted if they have the same row dimension m and the same column dimension n.
The addition + and the subtraction — are carried out by adding and subtracting,
respectively, the elements with identical indices.

C=A+B Cy = @y + by i=1,...m; k=1,..,n
C=A-8B Cy = @y — by i=1,..m;k=1,.n

Scaling : A matrix A is scaled by a scalar ¢ by multiplying each element of the
matrix A by c.

B =cA b, = cay i=1,..m; k=1,.,n

Multiplication : A matrix A can be multiplied by a matrix B from the right only if
the column dimension of A and the row dimension of B coincide. The matrix
product AB, a matrix with the row dimension of A and the column dimension of B,
is calculated as follows :

n
C =AB Cp = 2 ay by i=1,...m;r=1..s
k=1

The product of a matrix and a vector is a special case of matrix multiplication. A
matrix A can only be multiplied by a vector u from the right if the column dimension
of A and the dimension of u coincide. The product of a matrix and a vector, a vector
whose dimension is the the row dimension of A, is calculated as follows :
n
v = Au Vi 1= ) ay Uy i=1,..m
k=1
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Graphical representation : The product of two matrices and the product of a
matrix and a vector are graphically represented as follows :

e B uy| u
k i bkr k = Uy
K : k
bnr Un
1 T S
ajq i i Cjr ajy ik An || Vi
A c A Y
matrix product C = AB product of matrix and vector v =Au

Rules for matrix operations : The rules for the elementary matrix operations
follow from the theory of vector spaces :
(1) Matrix addition is associative and commutative.

(A+B) + C =A+(B+0C)

A+B =B+A

(2) Matrix scaling is associative, and it is distributive with respect to addition.
(ab)A = a(bA)
(@+b)A = aA+bA
a(A+B) = aA+aB

(3) Matrix multiplication and the muiltiplication of a matrix and a vector are associ-

ative, and they are distributive with respect to addition. Matrix multiplication
for quadratic matrices is not commutative in general.

(AB)C = A(BC) (AB)Ju = A(Bu)
(A+B)C = AC+BC (A+B)u = Au+Bu
AB+C) = AB+AC A(u+v) = Au+Av
AB = BA

(4) For the zero matrix 0 and the identity matrix I and the scalars 0O and 1 :
A+0=A IA = A Al = A 1A = A Iu =u
A-A=0 A0 =0 0OA =0 OA =0

From:cA=0sit-follows;that.-c.=0:0r-A = 0. However, from AB =0 it does not
follow that A=0 or B=0.
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Inverse : A matrix X is called a right inverse of the matrix A if AX =1. A matrix Y
is called a left inverse of the matrix A if YA =1. If the matrix A has row dimension
m and column dimension n, then a left or right inverse of A has row dimension n
and column dimension m. The following rules hold for the existence of inverses of
a matrix A :

(1) If m<n, the matrix A may possess a right inverse, but not a left inverse. If
a right inverse exists, it is not unique.

(2) If m>n, the matrix A may possess a left inverse, but not a right inverse. If
a left inverse exists, it is not unique.

(3) If m=n, the quadratic matrix A may possess both a left inverse and a right
inverse. If a left and right inverse exist, they are identical and unique. The
inverse of a quadratic matrix A is designated by A~'.

Regular and singular matrices : A quadratic matrix A is said to be regular if it
has an inverse A~'. It is said to be singular if it does not have an inverse.

Rules for inverses : The definition of the inverse of a regular matrix implies the
following rules :

(1) The inverse of the inverse of a regular matrix A is the matrix A.

(A7) = A
(2) The inverse of a scaled matrix cA is equal to the inverse of A scaled by a
factor c™1.

(cA)™!' = A7

(3) The inverse of a product AB of two regular matrices A and B is equal to the
product of the inverses in reverse order.

(AB)™' = B-A"

Transposition : A matrix A of row dimension m and column dimension n is
transposed by interchanging its rows and columns in the matrix scheme. The
transpose of A is designated by AT; it is a matrix of row dimension n and column
dimension m.

B =AT b, :
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Rules for transposes : The definition of the transpose of a matrix implies the
following rules :

(1) The transpose of the transpose of a matrix A is the matrix A.
(AT = A

(2) The transpose of the sum of two matrices A and B is the sum of the two
transposes.
(A+B)T = AT+BT

(3) The transpose of a scaled matrix cA is equal to the transpose of A scaled by
a factor c.

(cA)T = cAT

(4) The transpose of the product of two matrices A and B is the product of the
two transposes in reverse order.
(AB)T = BTAT

(5) The transpose of the inverse of a regular matrix A is the inverse of the trans-
pose. It is sometimes designated by AT,

(A—1)T — (AT)—1 = A—T

Symmetric and antisymmetric matrices : A quadratic matrix A is said to be
symmetric if the matrix and its transpose coincide. It is said to be antisymmetric
if the matrix and its negative transpose coincide. The diagonal elements of an anti-
symmetric matrix are zero.

A= AT
Ais antisymmetric = A = —AT

A is symmetric

¢

Rules for symmetric and antisymmetric matrices : The definition of the sym-
metry and antisymmetry of matrices implies the following rules :

(1) The sum of two symmetric matrices is a symmetric matrix. The sum of two
antisymmetric matrices is an antisymmetric matrix.

(2) Scaling a symmetric matrix yields a symmetric matrix. Scaling an antisym-
metric matrix yields an antisymmetric matrix.

(3) Every quadratic matrix A has a unique representation as the sum of a sym-
metric matrix Ag and an antisymmetric matrix A,.

A=A.+A A. = L(A+AT) A (A—AT)
s T Aa s T 5 A

1
2
(4) The inverse of a regular symmetric matrix is symmetric.
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Orthonormal matrix : A real quadratic matrix A is said to be orthonormal if its
column vectors are pairwise orthonormal. This is equivalent to the condition that
the transpose AT and the inverse A~ coincide.

Ais orthonormal :< ATA = AAT =1 < AT=A"!

Rules for orthonormal matrices : The definition of orthonormality of matrices
implies the following rules :

(1) The product of two orthonormal matrices is an orthonormal matrix.

(2) The inverse of an orthonormal matrix is orthonormal.

Nilpotent matrix : A quadratic matrix A is said to be nilpotent if the product A A
is equal to the zero matrix 0. The dyadic product xy " of two vectors x, y is a nilpotent

matrix if and only if the vectors x and y are orthogonal, so that x'y = y'x = 0:
A = xy'

AA = xy'xy" = x(y"™x)y" = (y'x)xy" =0-xy" =0

Idempotent matrix : A quadratic matrix A is said to be idempotent if the product
AA is equal to A. The matrix A =I —xy is idempotent if the vectors x and y are
not orthogonal and xTy = y'x = 1:

A = I-xy'
AA

I-xy") I-xy") = I1-2xy"+ xy'xy'
I-2xy"+ x(y"x)y" =1-2xy"+ xyT = I-xy' = A

Self-inverse matrix : A quadratic matrix A is said to be self-inverse if the inverse
A" coincides with A, sothat AA =L The matrix A = I —2xy" is self-inverse if the
vectors x and y are not orthogonal and xXly =y'x=1:

A
AA

il

I-2xy'

I-2xy")(@-2xy") =I-4xy"+ 4xy'xy’
= I-4xy"+4x(y™x)y' =I-4xy"+ 4xy’ =1
A self-inverse matrix A with AA =T is orthonormal if A is symmetric, so that A = AT.

The self-inverse matrix A =1 — 2 xyT with x"y = 1 is symmetric if y = x and hence
T :
x'x=1:

A = I-2xx'

AT = g-2xxD)T=I1"-2(x")"x" =1-2xx" = A
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Example 1 : Matrix products

The product AAT is symmetric.

AT

A -1 1 0 1 2 AAT

The product L M of two lower triangular matrices is a lower triangular matrix.

-2 0 0 M
1] 0
-1 2 1
-1 0 0 2 0 0
1 1 0 -1 |- 0
L 2 1 1 -4 1 1 LM

The product A B of the following matrices A and B is a zero matrix 0, although
neither A nor B is a zero matrix.

1 2|8B
2 | 4
1] 2

-1 0 1 0 0

A 1| - 1 0 0 AB =0
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Example 2 : Inverse matrices

Let the following matrix A be given. The rectangular matrix B is a right inverse of
A for arbitrary values of a,be R, since AB=1:

a,beR

AL AB =1

Let the following symmetric matrix A be given. It is regular and has a unique sym-
metricinverse A~'. The products A A~' and A~" A are equal to the identity matrix I.

—1
0.375 0 |-0.250 A

0 0.500 | 0.500

-0.250| 0.500 | 1.000
4 -2 2 1 0 0
-2 5 -3 0 1 0
2 -3 3 0 0 1

A ‘ ~ AA' =1

Example 3 : Orthonormal matrices

Let an orthonormal matrix R containing sine and cosine functions of an angle a
be given. The products RTR and RRT are equal to the identity matrix since
sina + cos?a =1.

cosa | —sina R
sina cos a
COSs o sina 1 0
RT —sina! cos a 0 i 1 R'R =1
RT
cos a sin a
—sin ai Ccos o
cosa | —sina 1 0
R sina | cosa 0 1 RRT = I
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3.74 DERIVED SCALARS

Bilinear form : A bilinear form is a scalar quantity b which is calculated from the
vectors u and v and a matrix A as follows :

m n
b:=ulAv = Y > uaVv
i=1 k=1
Quadratic form : A quadratic form is a scalar quantity q which is calculated from
a vector u and a quadratic matrix A as follows :

q:= u'lAu =

m m
i=

U; 8 Uk

1 k=1

Positive definite matrix : A quadratic real matrix A is said to be positive definite
if the quadratic form q is invariably positive for arbitrary non-zero real vectors u.
It is said to be positive semidefinite if q is positive or zero.

A is positive definite < /\o u'lAu >0
u=

A is positive semidefinite  :<> /\0 u'lAu =0
u=

Trace : The trace of a quadratic matrix A is the sum of its diagonal elements :
m
trA = ) ay
k=1

Determinant : The determinant of a quadratic matrix A is a scalar which is calcu-
lated according to the following recursive rule :

n ,
detA := Y (-1)*ka, det A, ie{1,..,n}

k=1

n dimension of the quadratic matrix A

A,  the quadratic matrix of dimension n — 1 which is obtained from A by
deleting row i and column k

The determinants of quadratic matrices of dimension n =1, 2, 3 are calculated as
follows :

det = ay

2419|892
det ——— = 8418 T 84p 8y
21922
ay1|842|a43
det a21 a22 323 = a11 a22 a33 + 812 a23 331 + a13 321 832
a a a — i —
31{782| 33 dq3 dgp d3q — Ayq Apz A3y — Ayp Apq A3
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3.7.4 Vector and Matrix Algebra : Derived Scalars

Rules for determinants : The following rules hold for determinants :

M

(2)

(4)

The determinants of a matrix A and of its transpose AT are equal.
det A = det AT

The determinant of the inverse A" of a regular matrix A is equal to the recip-
rocal of the determinant of A.

det A = 1/detA

The determinant of a product AB of two quadratic matrices A and B is equal
to the product of the determinants of A and of B.

det (AB) = det A * det B

If the matrix A is a lower triangular matrix L, an upper triangular matrix R or
a diagonal matrix D, then its determinant is the product of its diagonal ele-
ments.

n
detA = a A=LRD
L kk

Norms : Norms are scalars which are defined for a vector v and a quadratic
matrix A as follows :

n

Vi, := max |v,] [A], = max > [a]
k i k=1
n n
Iviy == X 1wl [Aly = max > [ay
k=1 k i=1
n \ 1/2 non \ 1/2
vl == | 2 1wl Al = > gl
k=1 i=1 k=1
Rules for norms : The following rules hold for norms with the same index :
fevl = fcllv] [cA| = |c||A]
Ju+v] =< Jul+]v]| |A+B| = |A|+|B|
[Av] = |A]]v] |AB| =< |A[|B]
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Example 1 : Determinants

Let a quadratic matrix A be given; its determinant is calculated according to the
recursive rule with i =1 as follows.

4|22
— 3
det A = detf-2| 53| = > (1)1 a,, det A,,
23| 3 K
5)|-3
det A;; = det = 5*3—-(-3)*(-3) =6
-3/ 3
-2 -8
det A;, = det| — = (-2)*3-(-3)*2=0
2|3
2|5
det A3 = det — = (2)*(-3)-5*2= -4
2|-3
det A = a; det Ay —ay, det A, + a;5det Ag

= 4+6— (-2)*0+2+(-4) = 24— 8 = 16

The determinant of the inverse A~ is calculated from the determinant of A
according to the rules for determinants :

det A-' = 1/det A =

1
16
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Example 2 : Quadratic form and norms

Let a quadratic matrix A and a vector u be given. The calculation of the vector
v =Au and the quadratic form u'v = u"Au is represented graphically :

u
2

-1

1

4 | 2 2 12

-2 5 -3 |12

Al 23 3||10]|Au =v
E

UTL2 ' 1 ||46|uTv uTAu

The norms |u |, | v|, and | A|; are calculated as follows :

Jul, = max{2,1,1} = 2 [v], = 12
luly = 2+1+1 = 4 Iv], =34
Jul, = [22+(12+12]°5 = 6 lvl, = /388
|A|, = max{(4+2+2),(2+5+3),(2+3+3)} =10

|A], = max{(4+2+2),(2+5+3),(2+3+3)} =10

|A], = [42 + (-2)% + 22 + (-2)% + 52 + (-3)2 +

22 4+ (-3)2 + 32105

Ve

Thenorms | A |, and | A|, are equal, since the matrix A is symmetric. The vector
and matrix norms are compatible :

|Aul, < [A],[u], : 12 = 10=2
|Auf, = JA}; July 3 = 10«4
|Auj, =< |A], |u], : /388 < [84+6
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3.75 COMPLEX VECTORS AND MATRICES

Introduction : The definitions, operations and rules in Sections 3.7.1 t0 3.7.4
are valid for complex vectors and matrices, unless an explicit restriction was made.
The specific characteristics of complex vectors and matrices arise in connection
with their conjugates. Some of the specific properties of complex vectors and
matrices are named after the mathematician Hermite.

Complex quantities : A complex number is represented by a real part and an
imaginary part. This form of representation is transferred to vectors and matrices.

complex scalar c=a+ib a, b real scalars
complex vector c=a+ib a, b real vectors
complex matrix C=A+iB A, B real matrices
number i 2= -1

Conjugate quantities : A complex quantity is transformed into the correspond-
ing conjugate quantity by changing the sign of the imaginary part. Conjugate quan-
tities are designated by a horizontal line over the symbol.

conjugate scalar c =a-ib
conjugate vector c=a-ib
conjugate matrix C=A-iB

Hermitian transpose : The transpose of the conjugate of a complex matrix C is
called the hermitian transpose and is designated by (C)" or C".

C=A+iB cH:= ()T = AT-iBT
The hermitian transpose of a complex vector ¢ is defined as a special case of a
complex matrix as follows :

c=a+ib ch:=@)T =a"-ibT
Hermitian scalar product : The scalar products = u o v of two complex vectors

u and v is called the hermitian scalar product and is designated by (u)"v or uH v.
It is calculated as follows :

s = uov:=ulv u=a+ib v=c+id

s = ki (@, —iby )(C, +idy )
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By definition, the hermitian scalar product may be reduced to the real vectors
a,b,c,d as follows :

s = (a—ib)o(c+id) = (acc+bod) + i(acd—boc)

The conjugate of the hermitian scalar product is given by :

H

S = UoV = UoV = Vou = vu

Rules for hermitian scalar products : The definition of the hermitian scalar prod-
uct implies the following rules for complex vectors, which reduce to the rules for
scalar products in Section 3.7.2 in the special case of real vectors :

(1) The hermitian scalar product is commutative.

UoV = Vol

(2) The hermitian scalar product is distributive with respect to vector addition.
Uo(V+W) = UoV+UoW

(3) The hermitian scalar product is associative with respect to vector scaling.

(cu)ov = c(uov)

(4) The hermitian scalar product u o u is real and positive for u = 0.

uou >0 for u=0

Unitary vectors : Two complex non-zero vectors u and v are said to be unitary
if the hermitian scalar product u o v is zero and the hermitian scalar products u o u
and vov are one. If uov=0,then conjugation yields vou =0.
uandvareunitary < Uov=0 A uou=1 A vVov=1
< vou=0 A uou=1 A Vov=i1

Hermitian and antihermitian matrices : A complex quadratic matrix is said to
be hermitian if the matrix and its hermitian transpose coincide. It is said to be
antihermitian if the matrix and its negative hermitian transpose coincide.

A is hermitian < A= AH

Ais antihermitian < A = —AH

The rules for hermitian and antihermitian matrices are analogous to the rules for
symmetric and antisymmetric matrices in Section 3.7.3.
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Unitary matrices : A complex quadratic matrix is said to be unitary if its column
vectors are pairwise unitary. This is equivalent to the condition that the hermitian
transpose A" and the inverse A~ coincide.

Aisunitary = AHA=AA" =1 « AH = A"

The rules for unitary matrices are analogous to the ones for orthonormal matrices
in Section 3.7.3.

Example 1 : Scalar products
Let complex vectors x, y of the complex two-dimensional space C? be given :

1+ 2+

1—i —i

The conjugate vectors X, y are :

1 2—i

x|

1
<

Il

1+i i

The hermitian scalar products Xo X, yoy, Xoy, y o X are calculated as follows :
H

Xox = x"x = (1-)y(1+i))+ (1+i)(1-) = (1-®) + (1-)%2 = 4
yoy = yly = (2-)@+i) +i(-) = (43 - = 4
xoy = xty = (1-)@+i) + (1+i)(-) = (2--?) + (—i-i?)

= (3-i) + (1-) = 4-2i
yox = yHx = (2-)(1+i) +i(1-) = (2+i-?) + (i-?)

= (3+i) + (1+i) = 4+2j

The hermitian scalar products X oy and y o X are conjugate scalars.
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Example 2 : Hermitian and unitary matrix
Let the following matrix A be given :

A =1-2xx" xMx = 1
The matrix A is hermitian, since A = AH:
AM = @-2xxMH = H_2 (xthHxH = 1-2xx" = A
The matrix A is unitary, since AA"=A"A=AA=1:
AA = (1-2xx)@-2xx") = 1-4xx"+4x(x"x) x
= I-4xxH+4axxt =1
Since AA =1, the matrix A is also self-inverse, so that A = A~'. The properties

of the matrix A are demonstrated in the following numerical example for a given
vector X :

H
0.80 P).em X

0.80 0.80 0.64 ! —-0.48i
X =
0.60i 0.60i 0.48i . 0.36 H
X XX
110 -0.28 | 0.96i H
A = = = A
01 ~0.96i 0.28

1A
-0.28 0.96i
| ]
-0.96i, 0.28
—-0.28 | 0.96i 1 0
-0.96i| 0.28 0 1
A 0% AA =1




4 ORDINAL STRUCTURES

4.1 INTRODUCTION

The elements of an unstructured set are not ordered and therefore cannot be com-
pared. However, many applications of sets require a comparison between their
elements. For this purpose, order structures are defined in the following. The prop-
erties of ordered sets are used, for instance, to construct sorting algorithms for the
elements of a set.

To order a set, arelation is defined in the set. Such a relation may allow comparison
of all elements (total order) or only some elements (partial order) of the set. Order
relations, which are reflexive, antisymmetric and transitive, correspond to the rela-
tion < (less than or equal to) in the set of integers. Strict order relations, which are
antireflexive, asymmetric and transitive, correspond to the relation < (less than)
in the set of integers. Ordered sets are graphically represented in order diagrams.

Ordered sets may possess extreme elements. An element a of a set is minimal if
every element of the set is not less than a. The element a is the least element of
the set if a is less than every other element of the set. A set may contain several
minimal elements, but at most one least element. Analogously, there may be
maximal elements and a greatest element of a set.

For a subset A of a set M, bounds in M are defined. In contrast to minimal and
maximal elements of A and a least or greatest element of A, all of which are
contained in A, bounds of A may be elements of M which are not contained in A.
An element a of M, which need not be an element of A, is an upper bound of A in
M if every element of A is less than or equal to a. The least upper bound of A in
M is of particular importance. Lower bounds are defined analogously. These
concepts are required, for example, for the definition of real numbers.

Ordered sets may have various extremality properties. Well-ordered sets, which
are totally ordered and in which every subset contains a least element, are espe-
cially important. Directed sets and lattices are further examples of ordered sets
with extremality properties.

The comparison of properties of different ordered sets relies on the concept of sim-
ilarly structured sets. Two ordered sets are similarly structured if there is a mapping
between them which is not only bijective but also isotonic in both directions. Simi-
larly structured sets form an order type. A well-ordered order type is called an ordi-
nal number.

The order type of a set determines whether a certain mapping of this set onto itself
possesses fixed points. These fixed points are used to determine the properties
of ordered sets. Examples are furnished by Zorn’s Lemma, Zermelo’s Theorem
and.the-Axiom;of.ChoicesThe,chapter.concludes with a treatment of the compari-
son of cardinal numbers.
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42 ORDERED SETS

Introduction : To order a set, an order relation is defined in the set. The definition
of an order relation does not require that any two elements of the set be compara-
ble : In general, the set is only partially ordered. The total ordering of a set is a
special case : In this case, any two elements of the set are comparable. As in the
set of natural numbers, a strict order relation (for instance < in N) may be used
instead of the order relation (for instance < in N ). A strict order relation may also
order a set either partially or totally.

Order relation : Let a set M be given. A relation in M is called an order relation
if it is reflexive, antisymmetric and transitive. Order relations are often represented
by symbols like < or C. An order relation < in Mis thus a subset of the cartesian
product M x M with the following properties for elements a,b,ceM:

(1) = isreflexive : aeM = a=a
(2) < isantisymmetric : asb A bsa = a=b
(3) <= istransitive . asb A bsc = a=sc

Partially ordered set : Let a set M and an order relation < be given. Then the
domain (M ; <) is called a partially ordered set. The set M is partially ordered by
the relation <.

Example 1 : Every power set is partially ordered by inclusion.
Let a set Min the power set P(M) be given. The relation C (is a subset of) is defined
for elements A,B € P(M) in Section 2.1 :

ACB = (xeA = xeB)

This inclusion is an order relation, since for elements A,B,C € P(M) it possesses
properties (1) to (3) :

(1) C isreflexive : AeP(M) = ACA
(2) ¢ isantisymmetric : ACB A BCA = A=B
(3) C istransitive : AcB A BcC = AcC

Example 2 : Order relation "is a divisor of”

The divisor relation | (is a divisor of) in the set N’ of natural numbers except zero
is an order relation. The statement a| b is true if a is a divisor of b. The statement
is also true for the special cases a =1 and a =b. For example, 2 is a divisor of 4.
For elements a,b,c € N’ :

(1) | is reflexive - = ala
(2)slwis.antisymmetric__:__alb_A _bla = a=b
(3) | is transitive : alb A blc = ajlc
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Comparable elements : Two elements a, b of a partially ordered set (M ; <) are
said to be comparable if (a, b) or (b, a) is contained in the relation <, sothata<b
or b = a. In general, not every element of a partially ordered set can be compared
with every other element of the set.

Total order relation : An order relation < in a set M is said to be total (simple,
linear, complete) if it allows any two elements of M to be compared. In addition to
properties (1) to (3), a total order relation is also linear :

4 =<islnear : abeM = a=<bvb=sa

Totally ordered set : A partially ordered set (M ; <) is said to be totally ordered
(simply ordered, linearly ordered, completely ordered, a chain) if the order relation
< is total. Any two elements of a totally ordered set are comparable.

Example 3 : The set N of natural numbers is totally ordered.

The set N of natural numbers is totally ordered by the relation < (less than or equal
to), since for elements i,k,m e N :

(1) <= is reflexive :ieN = j=<i

(2) < isantisymmetric : i<k A k<i = i=k
(3) = is transitive ; iskAksm = i=sm
(4) < islinear : ihbkeN = i<k Vv k=i

Strict order relation : Leta set M be given. A relation in M is called a strict order
relation if it is antireflexive, asymmetric and transitive. Strict order relations are
often represented by symboils like < or C. A strict order relation < in M is thus
a subset of the cartesian product M x M with the following properties for elements
a,b,ceM:

(1) < is antireflexive : aeM = -—(a<a)

(2) < isasymmetric : a<b = -(b<a)

(3) < istransitive : a<b A b<c = a<c

Partially strictly ordered set : Let a set M and a strict order relation < in M be
given. Then the domain (M ; <) is called a partially strictly ordered set. The set M
is partially strictly ordered by the relation <.

Example 4 : Every power set is partially strictly ordered by proper inclusion.

Let a set M with the power set P(M) be given. The relation c (is a proper subset
of) is defined for elements A,B € P(M) in Section 2.1 :

AcBus=m(xeAr=mxeBmY (-(yeA))
yeEB
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This proper inclusion is a strict order relation, since for elements A,B,C € P(M) it
possesses properties (1) to (3) :

(1) c is antireflexive : AeP(M) = —(ACA)

(2) cisasymmetric : AcB = - (BcA)

(3) c is transitive : AcB A BcC = AcC

Example 5 : Strict order of the divisors of natural numbers

The relation || (is a proper divisor of) in the set N’ of natural numbers except zero
is a strict order relation. The statement a|| b is true if a is a divisor of b and a = 1
and a =b. For example, 2 is a proper divisor of 4. For elements a,b,c € ' :

(1) || is antireflexive : aeN' = —(alla)
(2) || isasymmetric : al|b = —(blja)
(3) || istransitive : al|lb A bllc = allc

Comparable elements : Two different elements a=b of a partially strictly
ordered set (M ; <) are said to be comparable if either (a, b) or (b, a) is contained
in the relation <, so that either a <b or b <a. In general, not every element of a
partially strictly ordered set can be compared with every other element of the set.

Total strict order relation : A strict order relation < in a set Mis said to be total
(simple, connex, complete) if it allows any two elements of M to be compared. In
addition to properties (1) to (3), a total strict order relation is also connex :

(4) < isconnex i abeM = (azb = a<b Vv b<a)

Totally strictly ordered set : A partially strictly ordered set (M ; <) is said to be
totally (simply, completely) strictly ordered or a strict chain if the order relation <
is total. Any two elements of a totally strictly ordered set are comparable.

Example 6 : The set N of natural numbers is totally strictly ordered.

The set N of natural numbers is totally strictly ordered by the relation < (less than),
since for elements i,k,meN :

(1) < is antireflexive : ieN = =(i<i)
(2) < isasymmetric : i<k = —(k<i)
(3) < is transitive i<k A k<m = i<m
(4) < isconnex izk = i<k v k<i

Ordered set : A set M is said to be ordered if there is a domain (M ; <) with the
order relation < or a domain (M; <) with the strict order relation <. The set may
be partially,ortotaliy,orderedsOrdered,sets are graphically represented in order
diagrams.
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Intervals : In an ordered set M, the following intervals are defined with the ele-
ments a, b eM. The properties of the intervals are indicated by different arrange-
ments of the square brackets [].

closed : [a,b] = {xeM | a=x=<b}
open : la,b[ = {xeM | a<x<b}
closed on the left, open on the right : [a,b] = {xeM |l a<x<b}
open on the left, closed on the right : la,b] = {xeM | a<x=<b}

Successor and predecessor : Anelementb of anorderedset(M; <)or(M; <)
is called a successor of the element acM if a <b or a <b, respectively, and the
openinterval]a, b[is empty. The element a with a = b is called a predecessor of b.

Order diagram : An order diagram represents an order structure of a set. Every
element of the set is represented by a point in the plane. If a pair (a, b) of elements
with a=b is an element of the order relation, the point for element b is placed
above the point for element a. The two points are joined by a line if element b is
a successor of element a.

Associated order relations : An order relation < and a strict order relation <
in the same set M are different subsets of the cartesian product M x M. The order
relations are said to be associated if they differ only by the diagonal {(x, x) | xe M}
of the product M x M.

£ - < = {(x,x) | xeM}
< = < U {xx) | xeM}
< = < - {(xx) | xeM}

The following equivalences hold between the statements of associated order
relations and the identity of elements :

X<y & XxX<yVX=y
X<y < XYy AX=EY

Associated order relations have identical order diagrams.
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Example 7 : Order diagram of inclusion in a power set

Let the power set P(M) of a set M ={a, b, c} be given. According to Example 1, P(M)
is partially ordered by the order relation C (is a subset of). According to Example 3,
P(M) is partially strictly ordered by the strict order relation c (is a proper subset
of).

The associated order relations C and c have the same order diagram. The order
diagram shows that equipotent sets lie on the same level and are therefore not
comparable elements of P(M). For example, {a, b} is not a subset or proper subset
of {a, c}, and {a, c} is not a subset or proper subset of {a, b}.

P(M) = {0.{a}, {b}, {c}, {a, b}, {b,c}, {c.a}, {a,b,c}}

{a, b, c}
{a,b} {a,c} {b,c}
{a} {b} {c}

Example 8 : Order diagram of the divisor relation for natural numbers

Let the indicated set M of natural numbers be given. According to Example 2, the
set M is partially ordered by the order relation | (is a divisor of). According to
Example 4, the set M is partially strictly ordered by the strict order relation || (is a
proper divisor of).

The associated order relations | and || have the same order diagram. The order
diagram shows that natural numbers on the same level in the order diagram are
not comparable. For example, 10 is not a divisor or proper divisor of 4, and 4 is not
a divisor or proper divisor of 10.

M = {2,3,4,56,7,9,10,11,12} C N

(12)
(19) @ ©) ©)

® @ ©) @
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Example 9 : Order diagram of the comparison of natural numbers

According to Examples 3 and 6, the set N of natural numbers is totally ordered by
the order relation < (less than or equal to) or by the strict order relation < (less
than). The associated order relations have the same order diagram in the form of
a chain.

N ={0,1,2,3,...}

0<s1=2=<3=<..

Subordering : The restriction of an order relation R in a set M to a subset S of
M is called a subordering of M. While R is a subset of the cartesian product M x M,
the restriction of R to S is a subset of S x S. The restriction contains exactly those
elements of R which are contained in S x S.

restrictionof Rto S:  {(a,b)eR | (a,b)eSx S}

If M is totally ordered by R, then S is totally ordered by the restriction of R to S. If
M is only partially ordered by R, then S may be partially or totally ordered by the
restriction of R to S.

Example 10 : Suborderings of a set

The following order diagram shows a partially ordered set with a partially ordered
subset T, and a totally ordered subset T,.

T, ordered set
T T, totally ordered set
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4.3 EXTREME ELEMENTS

Introduction : The total ordering of a set does not guarantee the existence of a
least or greatest element in the set. For example, with respect to the relation <,
the set of negative integers has the greatest element -1 but no least element, while
the set of positive integers has the least element 1 but no greatest element, and
the set of integers has neither a greatest nor a least element. Finite ordered sets
which are not totally ordered also do not in general have a greatest or least ele-
ment.

The extremality properties of a set A which is contained in a set B are described
in two fundamentally different ways. Considering only extreme elements con-
tained in A leads to the concepts of minimal / maximal element and least / greatest
element of A. Considering extreme elements of A which are contained in the set
M (including A) leads to the concepts of lower/upper bound and greatest
lower / least upper bound of A in M.

Minimal element : Leta set M be partially ordered by the relation <. An element
aeM is called a minimal element if every element x e M is not less than a, so that
x <a implies x =a. A minimal element of a set M is designated by minEI(M).

a = minEl(M) & (xeM A x=a = x=a)

An ordered set M may contain zero, one or several minimal elements. If a set
contains more than one minimal element, then these elements are not compara-
ble. A minimal element does not have a predecessor in the order diagram.

Maximal element : LetasetM be partially ordered by the relation <. An element
acM is called a maximal element in M if a is not less than every element x in M,
so that a<x implies a=x. A maximal element of a set M is designated by
maxEl(M).

a = maxEl(M) ;. (xeM A asx = a=x)

An ordered set M may contain zero, one or several maximal elements. If a set
contains more than one maximal element, then these elements are not compara-
ble. A maximal element does not have a successor in the order diagram.

Least element : Let a set M be partially ordered by the relation <. Then a
minimal element acM is called a least element in M if a is less than every other
element in M. A least element of a set M is designated by IeEI(M).

a = leEl(M) = (xeM = a=sx)

An ordered set need not contain a least element. If a least element exists, it is
unique;-for.if-a;and.b-are-least.elements, then by definition a<b and b<a, and
hence a =b.



Ordinal Structures 139

Greatest element : Let a set M be partially ordered by the relation <. Then a
maximal element aeM is called a greatest element in M if every other element in
M is less than a. A greatest element of a set M is designated by grEI(M).

a =grElM) & (xeM = x=a)

An ordered set need not contain a greatest element. If a greatest element exists,
it is unique, for if a and b are greatest elements, then by definitiona<bandb <a,
and hence a=b.

Example 1 : Extreme elements in finite sets

The following order diagrams for finite sets A and B show examples of extreme
elements. The set A contains a minimal element x, which is also the least element
in A, and a maximal elementy, which is also the greatest elementin A. The element
x of the set B is also a minimal and maximal element in B. The set B contains the
maximal elements X, y, z and the minimal elements u, x, but no least or greatest
element.

y, grEl z) maxEl
y | maxEl
X leEl u' minEl x| minEl, maxEl
ordered set A ordered set B

Example 2 : Extreme elements in infinite sets

The infinite set N of natural numbers contains a minimal element 0, which is also
the least element in N. The set Z of integers contains no minimal, maximal, least
or greatest element.

Upper bound : Let A be a subset of a partially ordered set (M ; < ). Then an ele-
ment aeM is called an upper bound of A in M if every element x€ A is less than
or equal to a. An upper bound of a set A in a set M is designated by ub,, (A).

a = uby(A) = (xeA = x=a)

A set A may possess zero, one or several upper bounds in M. If there is an upper
bound.a.of A.in.M;then.a.is.the greatest element in the set Au{a}. If the set A
contains a greatest element a, then a is also an upper bound of A in M.
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Lower bound : Let A be a subset of a partially ordered set (M ; < ). Then an ele-
ment aeM is called a lower bound of A in M if a is less than or equal to every
element xA. A lower bound of a set A in a set M is designated by Ib,, (A).

a = by(A) = (xeA = x=a)

A set A may possess zero, one or several lower bounds in M. If there is a lower
bound a of Ain M, then a isthe least elementin the set Au{a}. If the set A contains
a least element a, then a is also a lower bound of A in M.

Least upper bound : Let A be a subset of a partially ordered set (M ; <). Then
an element g of M is called a least upper bound (a supremum) of A in M if g is
an upper bound of A in M and g is less than every other upper bound s of A in M.
A least upper bound of a set A in a set M is designated by lub,, (A).

g = luby(A) = g = uby(A) A (s =uby(A) = g=s)

A set A need not possess a least upper bound in M. If a least upper bound exists,
itis unique, forif a and b are least upper bounds, then by definitona<bandb <a,
and hence a=>b.

Greatest lowerbound : Let A be a subset of a partially ordered set (M ; <). Then
an element g of M is called a greatest lower bound (an infimum) of A in M if g is
a lower bound of A in M and every other lower bound s of A in M is less than g.
A greatest lower bound of a set A in a set M is designated by glb,, (A).

g = glb,(A) < g =1lby(A) A (s=Iby(A) = s=g)

A set A need not possess a greatest lower bound in M. If a greatest lower bound
exists, itis unique, forif a and b are greatest lower bounds, then by definitiona<b
and b=<a, and hence a=b.
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44 ORDERED SETS WITH EXTREMALITY PROPERTIES

Introduction : Extreme elements are used to define special properties of or-
dered sets. Every subset of a noetherian/ artinian ordered set contains a maximal /
minimal element. Every subset of a well-ordered set contains a least element.
Every well-ordered set is totally ordered (for instance the natural numbers ordered
by the relation “less than”), but not every totally ordered set is well-ordered (for
instance the integers ordered by the relation "less than”).

Several types of ordered sets with extremality properties are defined in this sec-
tion. The initial segment of an element a in a totally ordered set M contains all ele-
ments of M which are less than a. For any two elements a, b in a directed set there
is an element which is greater or equal to a and b. A lattice is an ordered set whose
subsets possess least upper and greatest lower bounds. For example, every
power set ordered by inclusion is a complete lattice.

Noetherian ordered set : A partially ordered set M is said to be noetherian if
every non-empty subset A of M contains a maximal element.

A/g\M A=0 = a\E/A (a = maxEl (A)))

Artinian ordered set : A partially ordered set M is said to be artinian if every
non-empty subset A of M contains a minimal element.

A/g\M A=) = a\E/A (a = minEl (A)))

Well-ordered set : A partially ordered set M is said to be well-ordered if every
non-empty subset A of M contains a least element. The order relation of a
well-ordered set is called a well-ordering.

A/Q\M A=0 = a\6/A (a=leEI(A)))

Properties of well-ordered sets : A well-ordered set possesses the following
properties:

(W1) Every subset of a well-ordered set is well-ordered.

(W2) Every well-ordered set is totally ordered.

Proof W1 : Every subset of a well-ordered set is well-ordered.

Let A be a subset of a well-ordered set M. Then by definition A contains a least
element:,Every,subset,of Asissalsosa,subset of M and hence contains a least
element. Since every subset of A contains a least element, A is well-ordered.



142 4.4 Ordered Sets with Extremality Properties

Proof W2 : Every well-ordered set is totally ordered.

By definition, every subset of a well-ordered set M contains a least element. Hence
for arbitrary elements a, b eM the subset {a, b} of M contains a least element. It
follows that a and b are comparable, and hence M is totally ordered.

Order diagram of a well-ordered set : The elements of a well-ordered set
{a, b, c,...} are arranged consecutively on a line. The least element of the set is at
the beginning of the line. Every element is less than all elements to its right.

O—O—@— >

as<b=sc..

A well-ordered set may contain a greatest element. The greatest element is at the
end of the line and has no successor. Every element except for the greatest ele-
ment has a successor.

Example 1 : Order of the natural numbers and integers

The domain (N ; <) with the natural numbers N = {0, 1, 2,...} and the total order
relation < is a well-ordered set, since every infinite subset of N possesses a least
element. The domain (7 ; <) with the integers 7 = {...,-2,-1, 0, 1, 2,...} and the
total order relation < is not a well-ordered set, since the subset { -1, —2,...}, for
example, does not contain a least element.

Initial segment : Let (M; <) and (M ; <) be totally ordered sets. The subset A
of Mwhose elements are less than a e M is called the strict initial segment of ain M.
The subset B of M whose elements are less than or equal to aeM is called the
initial segment of a in M.

A is the strict initial segmentofainM < A = {xeM | x<a}
B is the initial segment of a in M = B = {xeM | x<a}

Successor : Let the domain (M ; >) be totally ordered. If M has a greatest ele-
ment g, then g does not have a successor. Assume that an element xeM is not
the greatest element of M. Let A be the set of elements z e M which are greater than
x. Then the element x has a unique successor if A has a greatest lowerboundy = x.

A:={zeM | z>x}

y is the successorof xinM < y = glby,(A) A y =X

In the general case, an element need not have a successor. However, for every
elementyx-of a:well-ordered;set;M,whichis not the greatest element of M, the set
A has a least element, and this is the successor of x.
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Directed set : A partially ordered set (M ; =) is said to be directed if for any two
elements a,b €M there is an element c €M which is greater than or equal to both
aandb:

Misdirected = A V (c=a Ac=b)
abeM ceM

Lattice : A partially ordered set (M ; <) is called a lattice if every subset of M
which contains two elements possesses a least upper bound and a greatest lower
bound in M. A lattice (M ; <) is said to be complete if every subset of M possesses
a least upper bound and a greatest lower bound.

(M;<)isalattice :< abeM =V (g = Iluby{a,b}) A
geEM
h\E/M(h = glby{a,b})
(M;<)iscomplete = ACM = XM(g = luby, (A)) A
9
th(h = glby, (A))

Example 2 : A power set ordered by inclusion is a complete lattice.

in Example 1 of Section 4.2 it is shown that every power set P(M) is partially
ordered by the inclusion C (is a subset of). To prove that P(M) is a complete lattice,
a subset A of P(M) is defined :

A:= {A,eP(M) | ACM Aiel} c P(M)
(1) The set A possesses an upper bound X = AU A,U... In P(M) :
AeA = AcX
(2) Letthe set Y be an upper bound of A in P(M). Then Y contains the set A,
foreveryiel. Hence X = A;u A,uU...isasubsetofY, thatis XC Y forevery
upperbound Y of A in P(M). Hence X is the least upper bound of A in P(M).
(38) The set A possesses a lowerboundV = A;nA,n...in P(M) :
AleA = VCA
(4) Letthe set W be a lower bound of A in P(M). Then W is contained in the set
A, for every iel. Hence W is a subset of V=A,n A,n..., thatis WC V for

everyrlowerboundWyofsAsingP(M)s Hence V is a greatest lower bound of A
in P(M).
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Example 3 : Lattice structure of the power set P(M) with M = {a, b, c}

The elements of P(M) and the order diagram for the relation C are shown in
Example 7 of Section 4.2. The least upper and greatest lower bounds of some
subsets of P(M) are determined using the formulas given in Example 2 :

A := {{a}, {a,c}, {a,b,c}}
lub(A) = {a}u{a,clu{a,b,c}
glb(A) = {a}n{a,cin{a,b,c}

B := {{a}, {b}, {a,cl}
lub(B) = {aju{blu{a,c} = {a,b,c}

{a,b,c}
{a}

glb(B) = {a}n{b}n{a,c} =0

C := {{a}, {a,c}}

lub(C) = {a}u{a,c} = {a,c}
gb(C) = {ajn{ac} = {a}
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45 MAPPINGS OF ORDERED SETS

Introduction : In order to study the properties of ordered sets, the concept of
“ordered sets with identical structure” is defined. Two ordered sets A and B are
similar (isomorphic, similarly structured) if there is a bijective mapping f : A—B
between them which is isotonic (homomorphic) in both directions. Ordered sets
which are similar to the set of natural numbers are well-ordered.

The cardinalities of the sets of a given system of sets are defined in Section 2.7.
Two sets A and B have the same cardinality if there is a bijective mapping f: A —B.
It follows from the definitions that similarly ordered sets have the same cardinality.
It does not follow, however, that sets of the same cardinality are similarly ordered.

To characterize similarly ordered sets, the concept of order type is introduced as
a class of similarly ordered sets. The relation < (less than or equal) is defined for
comparing order types. In the special case of well-ordered sets, < is an order
relation. The concept of ordinal number is introduced for the order types of
well-ordered sets. Well-ordered sets can be counted through using the ordinal
numbers of their subsets. Countable sets can only be counted through if they are
well-ordered.

Isotonic mapping : Let the domains (A ; <) and (B; <) be partially ordered
sets. A mapping f: A— B is said to be isotonic (homomorphic) if x<,y for
elements x, y € A implies f(x) <, f(y) for the images f(x), f(y) B.

f:A—Bisisotonic & (x=<,;y = f{(x) =,1(y))

Similarly ordered sets : Let the domains (A; <,) and (B; <,) be partially
ordered sets. The ordered sets are said to be similar (isomorphic) if there is a
bijective mapping f: A— B andboth f and ' are isotonic. The similarity of sets
is designated by A =B (A is similar to B).

The similarity relation = is an equivalence relation for a system M={(A; <),
(B; =5), (C; =3), ...} of partially ordered sets :

(1) The relation is reflexive : By virtue of the identity mapping every ordered set
is similar to itself.

(2) The relation is symmetric : A = B implies B = A, since every isotonic map-
ping f has an isotonic inverse 1.

(38) The relation is transitive : A =B andB = Cimply A = C, since for isotonic
mappings f:A—-Bandg:B—=C:

X<,y = f(x) =,fy) = gof(x) <5 gof(y)
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Order type : Let a system M ={A, B,...} of partially ordered sets be given. The
set M is partitioned into disjoint classes of similarly ordered sets using the equiva-
lence relation = (similarly ordered). An element of the quotient set M/= is called
an order type of the system M of sets. The canonical mapping from M to M/= is
designated by otype :

otype: M-—-M/= with  otype((A; C)) = [(A; C)]

(A;C) partally ordered set, element of M
[(A; C)] class with the representative (A ; C)

Comparable order types : The order type of a partially ordered set (A ; C,) is
said to be less than or equal to (symbol <) the order type of a partially ordered
set (B ; C,) if Ais similar to a subset S of B :

otype (A;C,) < otype (B;C,) :< \S/(AsS A SCB)

In the following, it is shown that the relation < for a system of well-ordered sets
is an order relation. If the sets are not well-ordered, then < is generally notan order
relation.

Order relation for well-ordered sets : For a system M={A,B,C,...} of well-
ordered sets, the relation =< (less than or equal to) has the properties of an order
relation :

(1) The relation is reflexive, since every ordered set A is a subset of itself and
similar to itself.

(2) The relation is transitive. In fact, otype (A) < otype (B) implies A = S with
S ¢ B, and otype (B) < otype (C) implies B = T with T ¢ C. Hence there
isasubset U of T suchthatA =S =UandUC T c C. From A = U and
U c C it follows that otype (A) < otype (C).

(3) The relation is antisymmetric. Each of the well-ordered sets of M is totally
ordered and contains a least element. For the chains A = <a,, a,,a,,...>
and B = <by, by, b,,...> the two conditions otype (A) < otype (B) and
otype (B) < otype (A) can only both be satisfied if otype (A) = otype (B).

(Co)—)—@)— — (Ascy)

f:A-B and f-1: B—A

(g (b)) — (o) — —»  (B:Cd
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Well-ordered order types : Letasystem M = {A, B,...} of partially ordered sets
with the quotient set M/= for the equivalence relation = (similarly ordered) be
given. An equivalence relation may be defined in the quotient set M/=. Let two
order types be equivalent if both contain only well-ordered sets or both contain only
non-well-ordered sets :

(1) Let the sets A,B € M be similar, and therefore elements of the same class
[AlinM/=. Letthe set A be well-ordered. Then the set B is also well-ordered.
In fact, for every subset {x, vy, z,...} of A with least element x the isotonic
mapping f : A — B yields a subset {f(x), f(y), f(z),...} of B with least element
f(x). Every subset of B corresponds to exactly one subset of A.

(2) It follows from (1) that every class of M/= contains either only well-ordered
or only non-well-ordered sets. The equivalence relation therefore partitions
the quotient set M/= into the class M, /= of well-ordered order types and
the class M /= of non-well-ordered order types.

Ordinal numbers : Letthe subset of well-ordered sets of a system M ={A, B,...}
of sets be M,,. The order type of a well-ordered set Ac M, is called the ordinal
number of A in the system M, and is designated by ord(A). The mapping ord is
the restriction of the mapping otype to the subset M, of M :

od: M, = M, /= with ord (A;C4) = [(A;E]
ord(A;C,) <ord (B;C,) < \s{(AzS A SCB)

Well-orderings of a finite set : Every unstructured finite set A={b, ¢, a,...} can
be well-ordered. To this end, the subset {a} is formed with an arbitrary element
acA. In the difference A — {a}, an arbitrary element b is chosen, and the union
{a}u {b} = {a, b} is formed. In the difference A — {a,b}, an arbitrary element c is
chosen, and the union {a, b} u {c} = {a, b, ¢} is formed. By continuing this con-
struction, a system of subsets is formed which is well-ordered with respect to the
inclusion C :

0 c{a} c {a,b} c {a,b,c} C ..

If the set A contains n elements, then this construction can be carried out in
n(n—1)(n - 2)... = n! different ways. Hence there are n! different well-orderings
of a finite set of cardinality n. If subsets with the same number of elements are
bijectively mapped onto each other, then the mappings between these well-
orderings are isotonic. Hence the n! different well-orderings are similar.

Finite ordinal numbers : The order types of well-ordered finite sets are ordinal
numbers. The subsets @, {0}, {0,1}, {0,1,2},... of the natural numbers are chosen
asrepresentatives;of the,classes=The.cardinal numbers 0,1, 2, 3,... of these sub-
sets are used to designate the finite ordinal numbers.
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Counting through a well-ordered set : To count through the elements of a well-
ordered set A ={b, c, a,...}, a system of subsets is formed. The least elementac A
is used to form the first subset {a}. The least element b of the difference A — {a}
is determined, and the union {a} U {b} = {a, b} is formed. The least element c of the
difference A — {a, b} is determined, and the union {a, b} U {c} ={a, b, c} is formed.
The subsets are well-ordered with respect to the inclusion c .

0 c {a} c {a,b} c {a,b,c} C ..

Every subset is designated by its cardinal number. The difference of successive
subsets contains exactly one element. The cardinal number of a given subset is
mapped bijectively to the element that is contained in the difference between this
subset and its predecessor. For example, the cardinal number 3 of the subset
{a,b, c} is mapped to the element c, since {a, b, c} — {a, b} = {c}. The elements of
A are counted through using these cardinal numbers.

Similarity of finite well-ordered sets : Every well-ordered set is a chain with a
least element. Finite well-ordered sets with the same cardinal number are there-
fore similar. If the cardinal numbers of two finite well-ordered sets are different,
then the set with the lower cardinal number is similar to a subset of the other set.
This subset is not unique.

Example 1 : Order types of a system of sets

The following order diagrams show a system M of ordered sets (M;; C). None of
the sets M, M,, Mj can be similar to one of the sets M,, M;, since there is no
bijective mapping between finite sets with different numbers of elements. There
are no isotonic mappings between the sets M;, M,, M. The sets M, and Mgare
similar. The domain (M,; C) is not well-ordered, since the subset {a, c} contains
no least element. The domain (M,; C) is not well-ordered, since M, contains no
least element. The quotient set M/= consists of four classes.

0 D @ © i
b e f) (h )

M M, M, M, My

—C

equivalencerclasses:{{asb;ciiifdsesfil [{g,h,i}], [{1,2}]}
[{1.2}] = {{1,2}, {3.4}}
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Example 2 : Similarity of finite well-ordered sets

Let the set A={a,,a, a3} be well-ordered with a, < a, < a;. Let the set
B ={b,, by, by, b,} be well-ordered with b, < b, < by < b,. Then the set Ais
similar to every subset of B that consists of three elements.

— L~ L~ o — — — —

.b1 {ba} 'Z_ba / {by}--»B by} ey, bs ) (by)—»8B
a,’ .'a2'_. (a,) > A ) - ."ae".. _ _\aa\_ s B
b, b, )}---@R- -0+ B by - ~(by)-—(b3)--(bs)-»B
- = //\ iy = //\_ > —

Ei1 32 a3 » A a '| 32 aa - » A

Example 3 : Order type of infinite non-well-ordered sets

Let A be the infinite set of rational numbers in the interval ] -2, —1], and let B be the
infinite set of rational numbers in the interval [1, 2[. The ordered sets (A ; <) and
(B ; <) are not similar, since A contains a greatest element while B does not.

While the sets A and B are not similar, A is similar to the subset S =]1, 1.5] of B.
Likewise, B is similar to the subset T =[-1.5, —1[ of A. The corresponding isotonic
mappings f and g are defined as follows :

f: S—=A with f(x) = 2x — 4 = otype (A) < otype (B)

g: T—B with g(x)=2x + 4 = otype (B) < otype (A)
For the order types of A and B, the relation < is not an order relation. Since the

sets A and B are not similar, otype (A) = otype (B) although otype (A) < otype (B)
and otype (B) < otype (A).

A B
-2 -1 0 1 2
f: S—=A g: T—»B
T S
e i} >
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Example 4 : Counting through parallel line segments

LetM ={r, s, t, u, w} be a set of line segments parallel to the x-axis. Every segment
is determined by the ordered pair (x4, X,) of the x-coordinates of its beginning and
its end. The segments may be ordered according to their beginning x, or according
to their end x,. These orderings are not similar.

ordering according to beginning : PEym & X5 < Xym)
order according to end : iC,m & Xoi) = Xo(m)

Let the statement "segment r covers segment s” be true if a straight line in the posi-
tive y-direction intersects first r and then s. Let the relation C 4 be the set of pairs
(r, s) for which the statement “r covers s” is true. The relation C 5 is not an order
relation, since it is not transitive : From ’r covers s” and ”s covers t” it does not
generally follow that "r covers t”. This is illustrated in the following example.

ya
s N
\ l
! —L t !
\ [
e w
| |
. r b |l u |
. — .
l \
‘ : > x
rcoverss s covers t

r does not cover t

None of the relations C, to T, is a well-ordering. For C, the subset {t,u} has
no least element. For C,, the subset {t, w} has no least element. The relation C 4
is not an order relation. Both coordinates of the pair (x,,X,) must be used in order
to define a well-ordering C,. For example, segments with equal coordinates x,
may be ordered according to the coordinate X, :

PCym = X5 < Xym) V (X1(i) = Xym N Xy = X2(m))

The relation C, may be used to count through the segments in the chain
<rsutw>.
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46 PROPERTIES OF ORDERED SETS

Introduction : The order type of a partially ordered set X determines whether a
certain mapping f: X— X has a fixed point f(x) = x. Fixed points of mappings are
used to prove equivalent properties of partially ordered sets. In particular, the fol-
lowing statements are proved to be equivalent :

—  Zom’sLemma: If every totally ordered subset of a partially ordered set X has
a least upper bound, then X contains a maximal element.

—  Zermelo’s Theorem : Every set may be well-ordered.

- Axiom of Choice : For an indexed family of sets S, with the index set I, there
is a mapping f:1—uU§; with f(i)eS;.

Fixed points in mappings of ordered sets : A point x €A is called a fixed point
of a mapping f : A=A if f(x) = x. If the set A is partially ordered, the existence of
fixed points may be deduced from properties of the mapping and of the order rela-
tion. The following theorems serve this purpose :

(F1) Let the domain (M; <) be a complete lattice. Then every isotonic mapping
f: M—M has a fixed point.

(F2) For arbitrary mappings f : X—Y and g : Y — X there are subsets AC X and
BC Y such that f(A) =B and g(Y - B) =X - A.

f
A [X-A=qgv-B) B=fA |Y-B

g

X ¥

(F3) Let a set M be partially ordered by the relation =. Then every mapping
f : M—M with f(x) = x has a fixed point if every well-ordered subset of M has
a least upper bound in M.

Proof F1 : Let the domain (M; <) be a complete lattice. Then every isotonic
mapping f : M—M has a fixed point.

(1) Let A be the subset of M whose elements x are less than or equal to their
image f(x). Since M is a complete lattice, A has a least upper bound a in M.

A= {xeM | x=f(x)}
a := luby, (A)

(2) Since the mapping fis isotonic, the image f(x) of every element x of A is also
an element of A :

XeA = x=f(x) = fx) =f(f(x)) = f(x)cA
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(3) Since the mapping f is isotonic, the image of every element x €A is less than
or equal to the image of the least upper bound a of A in M. Therefore f(a) is
an upper bound of Ain M :

XxeA = x=a = f(x) < f(a) =
x <f(x) =f(a) = f(a) = uby,(A)

(4) Since aisaleastupperbound andf(a) is an upperbound of A in M, it follows
that a < f(a). Hence the least upper bound a is an element of A, thatisaeA.
In (2) it was shown that this implies that f(a) is also an element of A, that is
f(a) e A. Since a is the least upperbound of A in M, ac Aandf(a) € Atogether
imply f(a) <a. Thus a <f(a) < a, and hence a =f(a). Therefore a is a fixed
point of the mapping f.

Proof F2 : For arbitrary mappings f : X—Y and g : Y—=X there are subsets
AcCXand BCY such that f(A)=B and g(Y —B) =X — A.

(1) The power set P(X) of the given set X is partially ordered by the inclusion C.
Define a mapping h : P(X) — P(X) such that the image of a subset S C Xiis the
difference of X and the image of the difference of Y and f(S) under g :

h(S) := X —g(Y —f(S))

(2) The mapping h is isotonic. In fact, SC T implies f(S) C f(T) and hence
Y —f(T) c Y —1(8S), so that g(Y —f(T)) C (Y —f(S)) and hence h(S) C h(T).

(3) The power set P(X) is a complete lattice (see Example 2 in Section 4.4). By
property (F1), the isotonic mapping h therefore has a fixed point h(A) = A. Let
B := f(A). Then the definition of h(S) under (1) yields :

g(Y—-B) = g(Y—f(A)) = X—h(A) = X-A

Proof F3 : Letthe domain (M; =) be a partially ordered set. Then every map-
ping f : M— M with f(x) = x has a fixed point if every weli-ordered sub-
set of M has a least upper bound in M.

Note : The proof is complicated by the fact that the sets involved are allowed to
be uncountable. To facilitate understanding, the following paragraphs describe the
construction of countable sets which satisfy conditions (1a) and (1b) of the proof.
However, these conditions are also suitable for characterizing uncountable sets.

For a freely chosen element aeM, the image f(a) is determined. If f(a) =a, the
desired fixed point has been found. Otherwise f(a) > a by hypothesis. Choose f(a)
as the successor of a. Analogously, f(a) is either a fixed point or may be used to
determinerarsuccessonf(f(a))sTheselement a and its successors are combined in
the chain A := {a, f(a), f(f(a)),... }.
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If the chain A is finite, its greatest element is by construction a fixed point of f.
Otherwise, it has a least upper bound b eM by hypothesis. An analogous chain
B := {b, f(b), f(f(b)),... } is formed beginning with the element b. This process is
continued. Since the least element of every chain is by construction greater than
every element of the preceding chain, the union of the chains A, B, ... is also a chain.
The sets considered in the proof are initial segments of this union.

For the general case, the proof is carried out as follows :

(1)

©)

An element a is chosen in the set M. Let S be the set of the subsets of Y CM
with the following properties :

(a) Each of the subsets Y is well-ordered with least element a and succes-
sor function f, . Thus the successor of y Y —{luby,(Y)} is f (y). Here
fy is the restriction of the given function f to the subset Y — {lub, (Y)}.

(b) Letthe strictinitial segment of an arbitrary element yeY with y #a be
Ay (y) ={z€Y]|z <y}. Then the least upper bound of A (y) in M is an
element of .

The proof is carried out in the following steps :

(a) Fordifferent elements Y, Z €S, either Z is the strict initial segment of an
elementin Y or Y is the strict initial segment of an element in Z.

(b) The union W of the sets Y €S is an element of S.

(c) The set W contains a greatest element, which is a fixed point of f.

To prove (2a), consider the subset V of elements xeYNnZ whose initial
segments in Y and Z coincide :

V:= {xe¥YnZ| By(x) =B,(x)}

(@) First consider the case that V contains a greatest element v,,. Then
By (Vo) = B3(vy). If v is not the greatest element of Y, then Y contains
the successor f(v,). Likewise, if v is not the greatest element of Z, then
Z contains the successor f(v,). Now assume that v, is neither the great-
est element of Y nor the greatest element of Z. Then both Y and Z con-
tain the successor f(v,). It follows from v, =f(v,) € YnZ and By (vy) =
B,(vy) that By (v4) = Bz(v,), so that f(v,) € V. The successor f(vy) eV
is greater than vy €V, contradicting the hypothesis that v is the greatest
element of V. Hence, contrary to the assumption, v, is the greatest ele-
ment of one of the sets Y and Z. This set is the strict initial segment of
the other set with respect to the element f(v,).
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(b)
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Now consider the case that V has no greatest element. Assume Y =V.
Then the non-empty subset Y — V of the well-ordered set Y contains a
least element y,, and V is the strict initial segment of y, in Y. Hence by
property (1b) of A, (y,) the least upper bound v, of V in M is an element
of Y:

Vo = IEEIY =V) =V = A(y)
luby, (V) €Y

it

= Vo

Analogously, the assumption Z =V implies that v, is an element of Z.
Thus Y =V and Z=V implies v,eYNZ. Since v, is the least upper
bound of V in M, it follows that v, €V. This contradicts the hypothesis
that V has no greatest element. Hence Y =V or Z =V, proving (2a).

(4) To prove (2b), consider an element y, of aset Y &S.

(@)

(b)

The strict initial segment of y, in Y is Ay(yo) ={yeY|y< y,}. Let
Z be an arbitrary other element of S. The initial segment of y, in YuZ
is to be determined. By (3), either Y is a strict initial segment in Z or Z
is a strict initial segment in Y. If Y is a strict initial segment in Z, then y,
is an element of Z with the strict initial segment A,(yy) = Ay (y,)- If
Yyo€Z and Z is a strict initial segment in Y, then A;(y,) = Ay (Y,) also
holds. If Z is a strict initial segment in Y which does not contain y, then

ZC Ay(Yo)- Altogether, Ay ,(Yo) = Ay (Yo)-

The union W= |J{y | y€S} is a chain, since arbitrary elements
yeYeS and zeZ S are comparable. In fact, YCZ or ZCY by (2a).
Without loss of generality, let ZC Y, so that YUZ =Y. Then y,zeY. But
Y is well-ordered by virtue of (1a), and hence y and z are comparable.

The strict initial segment Ay, (Yo) = {weW | w < y,}in the union Wis
formed. From y,eY and (4a) it follows that Ay, (yy) = Ay (Yo). Hence
Ay (Yo), like Ay (y,), is well-ordered with successor function f.

The union W is well-ordered, since every subset W of the chain W has
a least element. In fact, for a freely chosen element w, € W, there is a
Y €8 with w, €Y, and one obtains :

H:= {weWs | wswy} C By(wy) = By(wg) €Y

Since Y is well-ordered, H contains a least element, which is also the
least element of the chain Wg. Let the successor of an elementweW
beueYeS. Thenw <uiscontainedin By (u) = By (u). Since f(w) isthe
successor of win Y, f(w) is also the successor u of win W. Hence W is
well-ordered with successor function f.

By virtue of (1b), the least upper bound of Ay, (yg) = Ay(Yg) inMis an
elementof-Y;andhenceof WoAltogether, W possesses properties (1a)
and (1b), so that WeS.
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(5) Toprove (2c), considerthe unionW = | {Y | Y €S}. It was shown in (4) that
W eSS is a well-ordered subset of M. By hypothesis, W therefore has a least
upper bound b = lub, (W).

(a) Assume that the least upper bound b is not an element of W. Then
T := Wu({b} is well-ordered with least element a and successor func-
tion 1. The least upper bound of an arbitrary strict initial segment A (y)
is an element of T. Hence T possesses properties (1a) and (1b), so that
T =Wu{b}eS. Thus, contrary to the assumption, beW. Hence b is the
greatest element of W.

(b) Assume f(b) > b. It follows that f(b) is not an element of W, since b is the
greatest element of W. Then U := Wu{f(b)} with beW is well-ordered
with least element a and successor function f. The least upper bound
of an arbitrary strict initial segment A, (y) is an element of U. Hence U
possesses properties (1a) and (1b), so that U =Wu{f(b)} €S. Hence,
contrary to the assumption, f(b) e W. Since b is the greatest element of
W and f(b) = b by hypothesis, it follows that f(b) = b. Thus the greatest
element b of W is a fixed point of the mapping f.

Example 1 : Fixed point of a mapping with f(x) =x in a partially ordered set
(M ; =) with property (F3)

The diagram shows a partial ordering of a set M ={a, b, c, d, e, h}. Let a mapping
f: M—M be defined as follows :
fa) = e fic) = d f(e)
f(b) =c f(d) =d f(h)

Il

h
h
For the element aeM, the set S defined in Proof F3 contains the following
well-ordered subsets of M :

S = {{a}, {a, e}, {a,e,h}}

The intersection of the sets Y ={a,e} and Z={a, e, h} is YNZ ={a, e}. The initial
segments ofaand e in Y and Z are equal :

By(a) = B;(a) = {a}
By (e) = Bz(e) = {a, e}
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The set defined in Proof F3 is V ={a, e}. It contains a greatest element e. The set
Y is the strict initial segment of the element heZ. The union of the sets in S is
W ={a, e, h}. The set W is an element of S and contains a greatest element h,
which is a fixed point of the mapping.

The element b e M gives rise to the set S = {{b}, {b, c}, {b, c,d}}. This set of well-
ordered subsets of M leads to the fixed point f(d) = d.

Equivalent properties of ordered sets

(E1) For every set X with the power set P(X) and Py(X) =P(X) — 0 there is a
mapping f : Po(X)—X with f(A)e A C X.

(E2) A partially ordered set (X ; <) has a maximal element a if every well-ordered
subset of X has a least upper bound in X.

(E3) Every partially ordered set (X ; <) contains a totally ordered subset which is
not contained in any other totally ordered subset of X. This subset is called
a maximal chain of X.

(E4) If every totally ordered subset (chain) of a partially ordered set (X ; <) has
an upper bound, then X contains a maximal element (Maximality Principle,
Zorn’s Lemma).

(E5) Every set can be well-ordered (Zermelo’s Theorem).

(E6) If a mapping f : X—Y is surjective, then there is an injection g : Y—X with
fog(y) =y.

(E7) Let {S, | ieI} be an indexed family of non-empty sets S;. Then there is a
choice function f:1—= U { S, | iel} with f(i)eS; (Axiom of Choice).

In the following, it is shown that each of the properties E2,...,E7 follows from the
preceding property and that E1 follows from E7.

Proof : E1 = E2

Assume that statement (E2) is false. Then A := {xeX | x>a} = 0 foreveryaeX.
By (E1) there is a mapping f : Py(X)—X with f(A) €A, so that f(A) > a. Hence the
mapping g : X—X with g(a) =f(A) has the property g(a) > a. By theorem (F3),
however, g has a fixed point g(x) = x. Thus, contrary to the assumption, statement
(E2) is true.

Proof : E2 = E3

Let the set S of all chains in X be partially ordered by inclusion. Let the set C be
a well-ordered subset.of S, so.that K;,K,€C = K, C K, v K, CK,. The union
K= U{ K;| K; € C}is a chain which includes every element of C. Since the chains
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are ordered by inclusion, K is the least upper bound of C. Since every well-ordered
subset of S has a least upper bound in S, it follows by (E2) that S has a maximal
element. This element is a maximal chain.

Proof : E3 = E4

By statement (E3), every partially ordered set X contains a maximal chain. Choose
amaximal chain K in X. By hypothesis, K possesses an upper bound x. This bound
is a maximal element of X.

Proof : E4 = E5

Let W be the set of well-ordered subsets (M ; C ) of X. The set W is ordered using
the relation <, which is defined as follows for (A,;C,), (B;Cg)eW:

(A;cp) = B;cg) = A=B and C,=Cg4

(A;c,) < (B;Cg) =  Aisa strict initial segment of B and
C 5 is the restriction of Czto Ax A

By part (4) of Proof F3, the union of the elements of a well-ordered subset T of W
is an element of W, and hence an upper bound of T in W. It follows by (E4) that W
contains a maximal element. Let this be (C ; C ). To prove (E5), itis to be shown
that C = X.

Assume C = X. The set N =Cu{x} is formed with an element xeX — C. Since C
is well-ordered, N is well-ordered if x is defined to be greater or equal to every
element of C. Thus the set (N; C\) with = U (C x{x}) is well-ordered.
Contrary tothe hypothesis, (C ; =) is notmaximal, since (C ; ©) <(N; ). The
contradiction shows that, contrary to the assumption, C = X.

Proof : E5 = E6

By statement (E5), the set X may be well-ordered. Since the mapping f : X—Y with
f(x) =y is surjective, the preimage f~'(y) contains at least one element of X. Since
X is well-ordered, f~'(y) is well-ordered, . Define the mapping g : Y —X such that
g(y) is the least element of ~1(y). Then fog(y) = .

Proof : E6 = E7

Let S := U{S; | iel}and X :={(s,i)eSxI | se §;}. Define the projections
pg : X—§ with pg ((s,i)) =s and p;: X—=Iwith p;((s,i)) =i. Then p; is surjective,
since S, = (). By (E6) there is an injection g : I->X with g(i) = (s, i) forsome s S,.
The mapping f : I—S with (i) = pgog(i) is a choice function since f(i) = pg((s,i)) = s
for some se S;.

Proof : E7 = E1

The set Ac P(X) is designated by S,. Then S={S, | A Py(X)}is an indexed
family of non-empty sets S, = (. Since for every element x € X there is a set {x}
insPy(X)sthe union of these setsisulgfsS, | AcPy(X)} = X. By (E7) there is a
function f : Py(X) =X with f(A) A for every non-empty subset A € Py(X).
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4.7 ORDERED CARDINAL NUMBERS

Introduction : To compare the cardinal numbers introduced in Section 2.7, the
order relation "less than or equal to” is defined. The cardinality of a set is less than
the cardinality of its power set. The cardinality of the set R of real numbers is
greater than the cardinality of the set N of natural numbers. The cardinality of the
n-fold cartesian product R" is equal to the cardinality of R.

Comparison of cardinal numbers : Let S={A,B,C,...} be a system of sets.
The set S is partitioned into classes of equipotent sets using the equivalence
relation ~ (equipotent). The quotient set S/ ~ is the set of cardinal numbers for S.
The cardinal number of A is said to be less than or equal to the cardinal number
of B if A is equipotent with a subset CCBin S.

cardA <cardB « V (CcB A A~C)
ces

Order relation for cardinal numbers : Let S ={A,B,C,...} be a system of sets.

The cardinal numbers of the sets are partially ordered by the relation < (less than
or equal to), since < possesses the properties of an order relation :

(1) The relation < is reflexive, since for A~A:
cardA €S/~ = cardA < cardA

(2) Therelation < is antisymmetric. By definition, for card A < card B there is an
injectionf : A— Bandforcard B < card A there is aninjectiong : B— A. By
the fixed point property (F2), there are sets XC Aand Y C Bsuch thatf(X) =Y
and g(B —Y)=A —X. Since f and g are injections, the restricted mappings
fy: X—=Yand gg_y: (B—Y)—(A—X)are bijective. Hence h : A— B with
hy =fyand h,_y=(gg_y) " is also bijective, so that card A = card B.

cardA < cardB A cardB < cardA = cardA = cardB

(3) Therelation < istransitive.Ifcard A < card Bthereisaninjectionf: A—B.
If card B < card C there is an injection g : B — C. The composition of these
injections is an injection h : A — C with h =gof, and hence card A < card C.

cardA <cardB A cardB =cardC = cardA <cardC

Cardinality of a power set : The cardinality of the power set P(M) of a set M is
greater than the cardinality of M. It is first proved indirectly that card P(M) < card M
does not hold. Then card M < card P(M) is shown to hold. Altogether, it follows that
card P(M) >card M :

—(card P(M) < cardM) A (cardM < card P(M)) =
card P(M) > card M
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(1) Letamapping f: M— P(M) be surjective. For every xeM, f(x) is the subset
of M to which x is mapped. Consider the set T of those elements of M which
are not contained in their image :

T:= {xeM | x&f(x)}

Since f is surjective and T eP(M), there is a preimage x, in M with f(x,) =T.
The definition of T implies X, €T <> X, ¢&f(x,) =T. The contradiction shows
that f is not surjective. However, for card P(M) < card M there is by definition
a bijective mapping from a subset of M to P(M), and hence a surjective map-
ping from M to P(M). This yields —(card P(M) <card M).

(2) The mapping g : M- P(M) with g(x) = {x} is injective. Thus there is a bijec-
tive mapping from M to a subset of P(M), and hence card M < card P(M).

Cardinality of the set of real numbers : In Section 2.7 it is shown that there
exists no bijective mapping from the set R of real numbers to the set N of natural
numbers. Hence card R = card N does not hold. Since N is a subset of R, by
definition card N < card R. Altogether, it follows that card N < cardR :

—(cardR = cardN) A (cardN < cardR) =

cardN < cardR

Cardinality of cartesian products of the set of real numbers : First, it is
proved that card R 2 = card R. For this purpose, a bijective mapping from the open
unitinterval 1 =]0,1[ to R is introduced :

f:1-R  with fx) = tann:(x—%)
The existence of the bijection f implies card R =cardI and card R2 = card I2,
and hence

card R2 =card R < card1? = cardI

The following bijection g : 12 — I is constructed using the decimal representation
of the real numbers :

x := 0.aya,a,... g(x,y) := 0.a;bya,byazb;...
y := 0.b;b,bj;...

This yields card 12 = card I, and hence card k2= card R. It follows by induction
that cardR" = cardR.



5 TOPOLOGICAL STRUCTURES
5.1 INTRODUCTION

Topology : A set M may be structured by distinguishing certain subsets of M
from the remaining subsets. The set of these distinguished subsets is called a
topology on M. The domain (M; T) is called a topological space.

The power set of M contains every subset that can be formed in M. A topology is
a subset of the power set which has the property that all finite intersections and
all unions of elements of the topology are also elements of the topology. The empty
set @ and the underlying set M are elements of any topology. An element of the
topology is called an open set of the topological space (M; T).

Euclidean space : Concrete examples of topological spaces are furnished by
euclidean spaces. The points of a euclidean space form the underlying set M of
the space. The set of points whose distance from a given point is less than a real
value £ >0 is called an e-ball. Every €-ball is an open set of the euclidean space.
The e-balls form a basis for the topology of the euclidean space. Every finite
intersection of e-balls and every union of e-balls is also an element of the topology.

An arbitrary subset of a euclidean space is called a shape. Lines, surfaces and
volumes are examples of such shapes. The topological properties of a shape re-
sult from the properties of the e-neighborhoods of its points. For example, the inte-
rior of the shape is the subset of those points of the shape for which there is an
e-neighborhood which contains only points of the shape. If all boundary points
belong to the shape, the shape is said to be closed.

Topological structure : The study of the structure of topological spaces is
based on mappings of these spaces. A mapping between topological spaces is
said to be continuous if the preimage of every open set of the target is an open set.
Bijective mappings which are continuous in both directions are said to be topolo-
gical. If there is a topological mapping between two spaces, they are said to be
homeomorphic : They are indistinguishable with respect to their topological struc-
ture. A property of a topological space which remains invariant under topological
mappings is called a topological invariant. Homeomorphic spaces possess the
same topological invariants.

Types of topologies : The topology of a space may possess special properties
in addition to the general properties of topologies. Examples of such topologies are
furnished by the natural topology of metric spaces and by the discrete topology,
which.is.defined for. any.set.. Topologies.with the same properties are subsumed
under a topology type.
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Topologies for new spaces may be generated using a mapping of known topolo-
gical spaces. Mappings with special properties generate topologies with special
properties, and hence topology types. Quotient topologies, sum topologies, rela-
tive topologies and product topologies are treated as examples of such topologies.
They play an important role in algebraic topology.

Connectedness : The connectedness of a set is a topological invariant. The
concept of disjoint sets is not sufficient for defining connectedness. The concept
of separated sets is therefore introduced. Two sets are separated if none of the
sets contains points of the closure of the other set. A set is connected if it is not the
union of non-empty separated sets.

Separation : Few of the properties of a topology are determined by the general
definition of topologies. Topologies are therefore often further characterized using
separation axioms. A separation axiom defines a relationship between points,
closed sets and open sets of a topological space. In particular, these axioms lead
to Hausdorff spaces as well as regular and normal spaces.

Convergence : An iterative mathematical procedure is said to be convergent if
it identifies a point of a topological space. The convergence of sequences is often
studied in metric spaces. A sequence is a mapping from the natural numbers to
the underlying set of the space. The question of the existence and uniqueness of
the limits of sequences and subsequences arises. A general description of con-
vergence is based on the definition of nets. A net is a mapping from a directed set
to the underlying set of the space. Nets are used in particular to study the compact-
ness of topological spaces. Limits of sums of the terms of a real sequence are
treated using series of numbers. The convergence of filters is studied in general
topological spaces.

Compactness : The number of elements of a finite set is a topological invariant.
It is suitable for characterizing the delimitation of the space. However, if a space
contains infinitely many points, the number of points is not suitable for character-
izing the topological delimitation. The concept of compactness is therefore de-
fined. A setis said to be compact if every covering of the set with open sets contains
a finite subcovering. The compactness of a space plays an important role in the
study of convergence.

Continuity : In metric spaces, the continuity of mappings may be defined using
the properties of accumulation points. This definition is compatible with the defini-
tion using the properties of open sets, but it is more convenient for some applica-
tions=The properties of limits-anddiscontinuities of real functions are studied using
this concept.
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5.2 TOPOLOGICAL SPACES

Introduction : The concept of a topological space arose in connection with the
study of continuous surfaces in euclidean space. The essential properties of such
spaces, however, are best elucidated by a definition of topological spaces inde-
pendent of geometry. For this purpose, a topological space (M ; T) is defined in this
section as a domain (M; T) with special properties. In contrast to algebraic and
ordinal structures, topological structures are not specified in the form of a relation
(such as + or <) in a set M, but rather in the form of a set T of subsets of M. In
the following, the central concepts of topology, open and closed set, neighborhood
and neighborhood system are defined for topological spaces.

Topology : A subset T of the power set P(M) of a set M is called a topology on
the underlying set M if :

(T1) The topology T contains the empty set § and the underlying set M.
PeT A MeT

(T2) The intersection of any two elements A and B of T is an element of T.
AeT A BeT = AnBeT

(T3) The union of an arbitrary number of elements A,B,... of T is an element of T.
AB,..eT = AuBuU..eT

The last part of the definition is not limited to the union of a countable number of
sets. Two topologies S and T on an underlying set M are said to be equal if they
contain the same subsets from P(M).

S=T = (AeS & AeT)

Topological space : A domain (M ; T) is called a topological space if T is a topol-
ogy on the underlying set M. Every element of the underlying set M is called a point
of the topological space. Every element of the topology T is called an open set of
the topological space and is a subset of M.

The sets M and T may be finite or infinite. If the set M is infinite, elements of T may
also be infinite sets. The infinite sets may be countable or uncountable.

To simplify notation, open sets are indexed in the following, as in T, or T, . This is
not meant to imply that the set of sets under consideration is countable. The
properties of a topology T on the underlying set M are then defined as follows :

(Tta) 0T A MeT
(TRa) T, eT A T eT = TNnT eT
(T3a) T,,T,...eT = TUT,u..eT
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Open and closed sets : A subset A of points of a topological space (M ;T) is
called an open set if it is an element of the topology of the space. The subset A is
called a closed set if its complement A =M — A in M is an element of the topology
of the space.

Aisopenin(M;T)
Aisclosedin (M;T)

Note : Instead of the expression”Ais openin (M ; T)”, expressions like "Ais open
in M” or A is open” are often used to improve legibility. The topological space
(M ; T) in which the set A is open must be identifiable from the context in which the
expression is used. Similar simplified expressions are used for closed sets.

Properties of open and closed sets :

(M1) The complement of an open set is a closed set. The complement of a closed
set is an open set.

(M2) The empty set § and the underlying set M of a topological space (M ; T) are
open and closed sets.

(M3) The union of a finite or infinite number of open sets is an open set.

(M4) The intersection of a finite number of open sets is an open set. The
intersection of an infinite number of open sets is not necessarily an open set.

(M5) The union of a finite number of closed sets is a closed set. The union of an
infinite number of closed sets is not necessarily a closed set.

(M6) The intersection of a finite or infinite number of closed sets is a closed set.

Proof : Properties of open and closed sets

(M1) The complementofanopenset A e Tis A = M — A. The complement A ¢ M
is a closed set since M— A = A €T. The complement of a closed set B is
B = M —B. The complement B is an open set since B €T by definition.

(M2) By property (T1), the sets (# and M are elements of any topology; hence they
are open sets. Since their complements M = @ and § = M are open sets, the
sets § and M are also closed sets.

(M3) This property follows directly from item (T3) in the definition of a topology.

(M4) Property (T2) in the definition of a topology directly implies that the inter-
section of a finite number of open sets is an open set. The following example
shows that the intersection of an infinite number of open sets is not necessar-
ily open. The intersection E of open intervals E, =] - 1ﬁ 14+ Jﬁ [ withneN
ontheR-axisis theinterval[0;1];since the limits 0 and 1 are contained in each
E, ; this interval is not open.
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(M5) The union of a finite number of closed sets A, is given by UA; = U(M — A D)
=M-n A By (M1), each of the complements A, is anopen set Hence by
(M4) the mtersectlon n A is an open set. By (M1), the complementM —n A
is a closed set. The union U A, is therefore a closed set.

The following example shows that the union of infinitely many closed setsis
not necessarily closed. The union E of the closed intervals E,, =[—— + T 1 ]
with neN on the R-axis is not closed, since the limit 0 is not contalned in E

(M6) The intersection of an arbitrary number of closed sets A, is given by
NA; = N(M—-A;) = M —UA, By (M1), each complement A, is an open set.
Hence by (M3) the set U A, is an open set. By (M1), the complement M — U A,
is a closed set. The intersection N A, is therefore a closed set.

Comparison of topologies : Two topologies T, and T, on the same underlying
set M are comparable if one of the topologies is a subset of the other. If T, cT,,
then T, is saidto be coarserthan T,, and T, is said to be finer than T,. The coarsest
topology on M is {#, M}. The finest topology on M is the power set P(M).

Neighborhoods : A subset A C M of the underlying set of a topological space
(M;T) is called a neighborhood of a point x e M if there is a subset T, of A which
is open and contains x.

A is a neighborhood of x :<> TVT (xeT, A T, CA)
€

To simplify notation, different neighborhoods of a point x are indexed in the
following, as in U;and U, . This does not imply that the set of neighborhoods of a
point is countable. The set of neighborhoods of a point x is called the neighborhood
system of x and is designated by U(x).

U = {U,cM 'Tk\éT(xe T AT, CU)}
A neighborhood A of a point xeM is said to be open if A is an open set. The
neighborhood A is said to be closed if A is a closed set. In general, a neighborhood
is neither open nor closed. The concept of an open neighborhood differs from the

concept of an open set in that the open neighborhood is related to a point xeM
and contains this point.

Properties of a neighborhood system : The definition of the neighborhood of
a point leads to the following properties of its neighborhood system :

(1) The neighborhood system U(x) is not empty.

(2) The neighborhood system U(x) does not contain the empty set ¢.

(3)ypifsthe neighborhood,systemyb(x)seontains the neighborhoods U; and U,,
then it also contains their intersection U, = U;nU,.
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(4) If the neighborhood system U(x) contains the neighborhoods U; and U,
then it also contains their union U, = U,uU, .

(5) Let U, be aneighborhood of the point x. Then there is an open subset T, of
U, such that U, is also a neighborhood for every point y of the subset T,.

(6) A setis a neighborhood for each of its points if and only if it is open.

Proof : Properties of a neighborhood system

(1) The neighborhood system U(x) contains at least the underlying set M, since
M is an element of the topology and x is an element of M.

(2) The neighborhood system U(x) does not contain the empty set @ since every
neighborhood U, of x contains x as an element.

(8) If U;and U, are neighborhoods of x, then there are open sets T, and T, such
that xe T, C U, and xe T, C U,. Theintersection T, n T, isanelement T
of the topology. The intersection U;n U, is an element U, of the power set
P(M). From xeT.n T and T, n T, C U;nU, itfollowsthatxe T C U, so
that U, is a neighborhood of x.

(4) If U,and U, are neighborhoods of x, then there are open sets T, and T, such
that xeT, c U; and xeT, C U,. The union T, U T, is anelement T of
the topology. The union U,u U, is an element U, of the power set P(M).
From xeT,uT, _and T, UT, C U;uU, itfollows that xe T, C U, sothat
U, is a neighborhood of x.

(56) Forevery neighborhood U, of the point x there is an open set T, such that
xe T, < Up,. Forevery point y of T, thisimplies ye T,,C Uy, sothat U is
a neighborhood for every point y of T, .

(6) If the neighborhood U, is not one of the open sets of the topology T and T,
is the union of all open sets contained in U,,,, then U, is not a neighborhood
for the points in the difference U, — T,. if, however, U, is an open set, then
the set U, is a neighborhood for each of its points.

Neighborhood axioms : In the preceding section, the properties of a neighbor-
hood system are derived from the definitions of topologies and neighborhoods. It
is also possible to define the properties of a neighborhood system by the following
neighborhood axioms and to derive the properties of topologies and neighbor-
hoods from these axioms. These two definitions of a topological space are equiva-
lent.

(U1) Every point x belongs to each of its neighborhoods.

(U2) The union of an arbitrary number of neighborhoods of a point x is a neighbor-
hood of x. The underlying set M is a neighborhood of x.

(U3) The intersection of two neighborhoods of x is a neighborhood of x.

(U4)sEveryineighborhoodsdrrofiaspointyx contains a neighborhood U; C U, of x
such that U, is a neighborhood of every point of U,.
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5.3 BASES AND GENERATING SETS

Introduction : For a topological space (M; T), the question arises whether the
topology T may be constructed from a basis B CT. In the following, it is shown that
while the topology T may be constructed by forming unions of sets of a basis, the
basis B is generally not unique. The question also arises whether a basis may be
constructed from a subset S of the power set P(M). This is possible, since every
subset of P(M) may be used to construct a generating set.

Basis of atopology : Let(M;T)be atopological space. A subset B of the topol-
ogy T is called a basis of the topology if T contains exactly those sets which result
from arbitrary unions of elements of B. To simplify notation, the sets of a basis B
are indexed, as in B; and B,. This does not imply that every basis is countable.

Second countable topological space : A topological space (M;T)is saidto be
second countable if there is a countable basis B of its topology T. For a countable
basis B ={B;,B,, B;, ...} there is, for every open set T,T, a countable index set
N; such that :

T,eT ' T,= U B,
neN,

A second countable space is said to satisfy the second axiom of countability.

Generating set : A subset E of the power set P(M) is called a generating set on
the underlying set M if :

(E1) The underlying set M is a union of elements of E.

(E2) Forevery point x of the intersection A of two elements of E there is an element
of E which contains x and is a subset of A.

To simplify notation, the sets of a generating set E are indexed, as in E;and E, .
This does not imply that every generating set is countable. The properties of
generating sets are then represented as follows :

(E1) M = UE,
(E2) /E\/E\ (x e EnE) = é/(XEEmQ(Ei”Ek)))

i —k
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Construction of a topology : A generating set E is a basis for a topological
space with the underlying set M. The set T which contains every union of elements
of E is therefore a topology on M.

T={Ti| V (T, = _U_ E)}

E'ce ! ==

Proof : A generating set is a basis of a topology.

(1) Itfollows from (E1) that T contains the underlying set M as an element. Since
T contains the union of an empty set of elements of E, it follows from the
definition of the generalized union that T contains the empty set § as an
element. Hence the set T possesses property (T1) of a topology.

(2) Itfollows from (E2) that every point of the intersection E; n E, of two elements
of E is contained in an element E,, of E which is a subset of E; n E,. Different
points in E; N E, are generally contained in different elements E ., E,,.... The
union of these elements is by definition an element of T. Hence the intersec-
tion E;n E, is an element of T. For open sets T, and T; there are subsets E'
and E” of E such that T, is the union of the setsin E’ and T is the union of
the setsin E”. Since all intersections E; N E, are elements of T, T, N T is also
an element of T. Hence the set T possesses property (T2) of a topology.

(8) Every element of T is by construction a union of sets in E. Every union of
elements of T is therefore a union of elements of E. But every union of
elements of E is by hypothesis an element of T. Hence the set T possesses
property (T3) of a topology.

Since the set T possesses properties (T1) to (T3) of a topology, T is a topology on
the underlying set M.

Subbasis of a topology : A subset S of the power set P(M) is called a subbasis
on the underlying set M. To simplify notation, the sets of a subbasis S are indexed,
asin S;and S,. This does not imply that every subbasis is countable.

Construction of a generating set : The set E of all intersections of a finite num-
ber of elements of a subbasis S is a generating set for a topology on the underlying
set M of the subbasis. To prove this, conditions (E1) and (E2) are shown to be satis-
fied.

(1) Since E contains the intersection of an empty set of elements of E, it follows
from the definition of the generalized intersection that E contains the under-
lying set M. Property (E1) is therefore satisfied.

(2)==By.construction;fortwo.arbitrarysets E; and E, the set E contains their inter-
section E, = E;nE, . Property (E2) is therefore satisfied.



Topological Structures 169

Discrete topology : The power set P(M) is called the discrete topology on the
underlying set M. A discrete topological space (M; P(M)) has special properties:

(1) Every subset of M is open, since it is contained in P(M).

(2) Every subset of M is closed, since its complement is contained in P(M) and
is therefore an open set.

(3) Mappings between discrete topological spaces are continuous, since the
preimages of open sets are open sets. The mappings are, however, gener-
ally not bijective and hence not homeomorphic.

Subsets of a discrete topological space are thus both open and closed. Bijective
mappings between discrete topological spaces are homeomorphic.

Equivalent bases : Let A and B be different generating sets on the underlying
set M. Let S be the topology constructed by forming unions of sets in A. Let T be
the topology constructed by forming unions of sets in B. Then the generating sets
A and B are called equivalent bases if the topologies S and T are equal. Equivalent
bases are generally not identical.

Establishing the equivalence of bases : Two generating sets A and B on an
underlying set M are equivalent bases if :

(1) For every open set A, of A and for every point x in A, there is an open set
B, in B such that xeB, C A,.

(2) Forevery open set B, in B and for every point y in B, there is an open set
Ag in A suchthat ye A,CB,.

Proof : Equivalence of bases

Let two generating sets A and B with properties (1) and (2) be given. Let the topol-
ogy constructed from A be S with the open sets S;. Then S; is by definition the
union of the sets of a subset A’ of A :

Si = AkLéA’ Ak

By (1), for every point xe S; there are open sets A, e A’ and B, B such that
xe B, C A,. For every point xe S, a set B, is determined in this manner; these

sets are collected in a subset B’ of B. The union of the sets in B’ is designated
by T,; itis by definition an element of the topology T constructed from B :

B' := {B,eB | x;/S. (xe B, CA, CS)}

U, B,

n" p,en
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Since every point x € S; is contained in one of the open sets B, B, it follows that
S, T,.Since every set B,,c B isasubsetofaset A e/, itfollowsthat T,CS,.
From §,CT,and T,CS,, it follows that T, = ;.

Analogously, (2) is used to show that for every open set T, T there is an identical
open set S; € S. Hence the generating sets A and B lead to the same topologies
S and T if conditions (1) and (2) are satisfied. Every generating set is a basis.
Hence A and B are equivalent bases.

Neighborhood basis : Let (M; T) be a topological space. A subset B(x) of the
neighborhood system U(x) of a point xeM is called a neighborhood basis at x if
every element of U(x) contains an element of B(x) as a subset. The definition of
a neighborhood system guarantees that every element of the neighborhood basis
B(x) contains at least one open set of the topology T as a subset.

V. V (T,cB,cU,
UeEU B,EB TmET( m < B )

First countable topological space : A topological space (M;T) is said to be
first countable if every point x € M has a countable neighborhood basis. Not every
first countable space is second countable. For example, it is shown in Section 5.4
that while every metric space is first countable, not every metric space is second
countable. A first countable space is said to satisfy the first axiom of countability.

Example 1 : Construction of a topology

A topology T is constructed on the underlying set M = {a, b, c}. The subbasis S is
chosen arbitrarily. The resulting neighborhood systems of the points of the topo-
logical space (M ; T) do not contain the subsets {a}, {c} and {a, c} of the power set
P(M).

subbasis : 8§ = {{a, b}, {b, c}}
generating set : E = {{a, b}, {b, c}, {b}}
topology : T ={n,{b},{a b} {b,c},{ab,ch}

neighborhood systems : U(a) = {{a, b}, {a, b, c}}
U(b) = {{b}, {a, b}, {b, c}, {a, b, c}}
Uc) = {{b,c} {a b, ch

It

Il
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Example 2 : Comparison of topologies and neighborhoods

ThesetT = {0, {b}, {b, c}, {a, b, c}} is a topology on the set M = {a,b,c}. The topol-
ogy T is coarser than the one in Example 1, since it does not contain the element
{a, b}. Hence {a, b} is not an open set in Example 2. Nonetheless, {a, b} is a neigh-
borhood of the point b, since the condition b e{b} C {a,b} is satisfied : The point
b lies in the open set {b} which is contained in {a,b}. The neighborhood system of
point a differs from U(a) in Example 1. The other neighborhood systems are the
same.

neighborhood systems : U(a) {{a, b, c}}
U(b) = {{b}, {a, b}, {b, c}, {a, b, c}}
U(c) = {{b, c} {a b,c}}

Example 3 : Equivalence of bases

Let M be an open set in the euclidean plane R 2. The set of all open disks around
all points in M is a topological basis A on M. The set of all open squares around
all points in M is a second topological basis on M. The bases A and B are
equivalent. For each pointin an open disk A, there is an open square B, C A, which
contains this point. Likewise, for every pointin an open square B, there is an open
disk A, C B,, which contains this point.

Pt e e A R et e <
oA R
—_ | [r———
T 1~y
I IBel ) | L (A |
| \ Sl | Gy
\"—/ | | | e | |
| o A | | | S —— | |
| | | |
| TP S LA SR I i | | S R S T |

basis A: x € B, C A basis B: y € A, € Bny
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5.4 METRIC SPACES

Introduction : A structure is defined on a set by assigning a distance to every
pair of points of the set. This mapping is called a metric. The metric structure of
a space may be used to derive a topological structure, but the converse is not nec-
essarily true. A metric topology is constructed by first defining e-balls. These balls
possess the properties of a generating set and therefore form a suitable basis for
a topology. Different definitions of the metric generally lead to different topologies.
Euclidean and discrete spaces are treated as examples of metric spaces.

Metric : A mapping d: MxM — R is called a metric on the set M if for all
elements x,y,z of M :

(M1) d(x,x) = 0
(M2)  d(x,y)
(M3) d(x,y) = d(y,x)
(M4)y  d(x,2)

> 0 for x=y

< d(x,y) + d(y,2)

The image d(x, y) is called the distance of the points x and y. A mapping with the
property d(x, y) = 0 instead of property (M2) is called a pseudometric.

Euclidean metric : The euclidean metric is defined by analogy with geometric
distance. The underlying set of n-dimensional euclidean space contains the
vectors X = (X,X,,...,X,,) of the real vector space R". The real numbers x; are
called the coordinates of the vector x.

RY = {X = (Xq, X0 Xg) | € R}

The mapping d : R" xR" — R is called the euclidean metric on R" if the distance
d(x,y) of the points x = (x4, ..., X,) and y = (y4, ..., y,)) is determined by analogy
with the distance in the space R3:

dixy) = xgmy)? 4 o+ (Xy=Y,)?

Discrete metric : A mapping d: MxM — R for an arbitrary underlying set M is
called a discrete metric if it yields the values d(x, x) = 0 and d(x, y) = 1 for arbitrary
different points x, y € M. Thus the discrete metric takes only two different values,
which are chosen to be 0 and 1.

d(x,x) := 0
dix,y) := 1 for x=y
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e-ball : Let a metric d be defined on a set M. The set of points of M whose distance
from a fixed point xe M is less than a positive real number ¢ is called an e-ball in
M and is designated by D(x, €).

D(x,e) := {yeM | d(x,y) < ¢}

If the metric is euclidean, then different values of ¢ lead to different point sets. If
the metric is discrete, then every e-ball with ¢ <1 is the set {x}, and every ¢-ball
with € > 1 is the entire set M.

Metric basis : For every point x of a set M on which a metric d is defined, there
is atleast one e-ball B, := D(x, £). The set B of the e-balls in M is a generating set,
and hence a basis for a metric topology. The ¢-balls are open sets of the metric
topology.

B := {B, = D(x,¢) | xeM}

Proof : Construction of a metric basis

(1) By the definition of the set B, every point xeM is contained in at least one
e-ball. The union of the e-balls therefore contains every point in M. Hence the
set B possesses property (E1) of a generating set.

(2) Let B,=D(x,r) and Bs=D(y,s) be different elements of the set B. If their
intersection B, N By is empty (for instance for a discrete metric), then condi-
tion (E2) for generating sets is satisfied, since there is no point x € B, N B.

(8) Iftheintersection B, N Bgis not empty, thenthere is a pointzin B, N Bs whose
distance from x is less than r and whose distance from y is less than s :

// Br \'\ /""_B""“\
/ X 5 o
/ Vi \ A
A \
! r}' B_* \ \'I
[ r |. fad | s I
| )
\ X \ 3 )’ll Y /
\ Gt /
\\ R, /
A >\ //
- . — -
\““‘-H__.__,_—-/
zeB/nBy = ze B, AN zeBg

= dx,z)<r A dy,z)<s

Thereisane-ball Bg := D(x, £) withe = min{r —d(x, z), s — d(y, z)} / 2 which
is contained in B, NBs. Hence the set B also possesses property (E2) of a
generating set.

e = min{r-d(x,z),s—-d(y,2)}/2
zZ e B C (B nBy)
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(4) Since the set B of ¢-balls has the properties (E1) and (E2) of a generating set,
B is a basis for a metric topology. The sets contained in a basis are by defini-
tion open sets in the topology constructed from this basis. Thus in a metric
topology every e-ball is an open set.

Metric topology : Let a set M and a metricd: M xM— R be given. Then the
metric basis B associated with d generates a metric (natural) topology T on M.
Every union of e-balls B, of the metric basis B is an open set T, of the natural
topology T.

TeT '« V (T.= U B

' BcB ' s

Metric space : The domain (M;d) with the underlying set M and the metric d is
called a metric space. A metric space possesses the natural topology induced by
its metric. In the following, a metric space is assumed to be equipped with this
natural topology.

Euclidean space : The domain (M;d) is called an n-dimensional euclidean
space if the underlying set M is the real space R" and d is the euclidean metric.

On the real line R', the elements of the natural basis are open intervals. On the
euclidean plane R2, the elements of the natural basis are open disks. In the
euclidean space R3, the elements of the natural basis are open spheres.

Discrete metric space : LetasetMandametricd: M xM— R be given. The
metric basis B induced by d is said to be discrete if for every point x e M it contains
an e-ball which contains only the point x.

B := {{x} | xeM}

A discrete metric basis generates a discrete topology.
(1) For different points x,y € M, there are e-balls whose intersection is empty.

(2) Every subset of M is an open set, since it is the union of the open sets of its
points.

(8) Every subset of M is a closed set, since its complement in M is an open set.

(4) The underlying set M is an element of the topology T. lts intersection with the
e-balls D(x, 1) is not empty.

The discrete metric topology of a set M is therefore the power set P(M). The
domain:(My;d)iscalled:adiscrete:metric:space if the metric d induces the discrete
topology.
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Neighborhood basis : The e-balls B, = d(x, £) form a neighborhood basis of
the point x. For every element B, there is an open set T; (namely T; = B¢) such that
the condition T, C B, is satisfied. For every neighborhood U, of x there is an

element B; C U, which contains at least the point x, and hence :

{J\i E&/g ym (Tm = B C Uy
In the following study of topological properties, it suffices to consider the neighbor-
hood basis B(x) instead of the complete neighborhood system U(x) of a point x € M.

B(x) = {B: | Be = D(x,¢)}

Open initial segment : The set O of rational numbers is totally ordered. For
every number g€, there is therefore a unique subset S, of Q which contains all
elements xeQ which are less than q. Such a subset is called an (open) initial
segment of 0.

Sq = {x€Q | x<q}

Openinitial : The subset of O for which x < 0 or x2 < 2 holds is not an open initial
segment in Q. Since there is no rational solution of the equation g% =2 (see
Section 6.5), there is no number g € @ which could be used to define an open initial
segment S, whose elements satisfy x <0 or x? < 2. To characterize the subset of
© for which x < 0 or x? < 2 holds, the concept of an open initial is defined.

A subset A of a totally ordered set (M; <) is called an initial in M if for every xeM
contained in A every yeM with y <x is also contained in A. An initial without a
greatest element is called an open initial.

Aisanopeninitial < A A (ysx = yeA)
xEA yEM

Example 1 : The real number /E
The real number /E is an open initial B in the set O of rational numbers :

B:= Q- u{xeQf | x2<2}

@~ negative rational numbers
@3 positive rational numbers and zero

(1) From xeQ~ and y <x itfollows that y € Q) ~. Hence x satisfies the condition
for an element of an initial.

(2) For xeQf and y<x, either yeQ~ or yeQy. If yeQ™, then yeB. If
yeQ{, theny <ximplies (x +y)(x —y) = 0, and thus y2 < x2. Then x2 <2
implies y2<2, and hence yeB. Altogether, x e@g and y <x with x2<2
implies y €B. Hence x satisfies the condition for an element of an initial.
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(3) The set B contains no greatest element. For every rational number xeQ§
with x? <2 there is a number ye 0§ withy >x and y2 <2.

4

— Choose y = ——

x+2

— The condition y > x is satisfied if 4 > x2 + 2, that is x? <2 . By hypothesis
x? <2, and hence y > x.

- To prove y?><2, the expression for y? is transformed. The inequality
%> 2 —z holds for every number ze@g with z < 1. This property is

used for 1‘23< 1:

x2+4+% x2+4+2(2—X§2)

From x2 < 2,y >xand y? <2, itfollows that B has no greatest element. Thus
B is an open initial. The real number B = ﬁ is irrational, since there is no
open initial segment for /5 in Q.

First countability of metric spaces : A topological space (M;T) is first count-
able if every point xeM has a countable neighborhood basis B(x). Every metric
space (M;d) is first countable. To prove this, consider the set of all e-balls with
center x and radius g *.

B(x) := {D(x,q) | geQ*}

It is required that every neighborhood of x contains an element of B(x). Since the
neighborhood system of x contains e-balls D(x, r) with an irrational radius r, it is to
be proved that D(x, r) contains an element of B(x). The irrational number r is an
open initial. The open initial contains a q, €@ * such that D(x, q,) is contained in
D(x, r). Hence B(x) is a neighborhood basis of x. Since (O is countable, B(x) is also
countable. Hence the metric space (M;d) is first countable.

Second countability of metric spaces : A topological space (M;T) is second
countable if its topology T possesses a countable basis. Not every metric space
is second countable. However, every euclidean space (R"; d) is second countable.
A discrete metric space is second countable if its underlying set M is countable.

Proof : Second countability of euclidean spaces

As a basis B of the topology of the euclidean space (R" ;d), choose the set of alll
e-balls D(x,q) with rational radius g€ Q" whose centers have rational coordinates
xseiditmThessetBiis;shown toshave thepproperties of a generating set and hence
of a basis of the topology. Since @ x @" is countable, B is also countable.
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(1) Every rational point xe R" is contained in an e-ball D(x,q) € B. Every point
y € R" some or all of whose coordinates (yy, ..., y,) are irrational is contained
in an e-ball D(0, q) € B with q > d(D, y). The union of the elements of B there-
fore contains every pointin R". Hence B possesses property (E1) of a gener-
ating set.

(2) In the construction of metric bases, it was shown that every non-empty
intersection B, n B, of two elements of B contains an e-ball (w, r). If r is not
rational, then the open initial for r contains a rational number g, such that the
e-ball(w, ) €B is contained in B;n B,. Hence B possesses property (E2) of
a generating set.

Proof : Second countability of discrete metric spaces

For every point x €M, the topology of a discrete metric space (M; T) contains the
one-element set D(x, 1) = {x}. Therefore every basis of T must also contain every
e-ball D(x, 1). Hence the cardinality of the basis is not less than the cardinality of M.
The basis B which contains the e-ball D(x, 1) for every point x €M is chosen.

(1) The union of the elements of B contains every pointin M. Hence B possesses
property (E1) of a generating set.

(2) The intersection of two elements of B is empty. Hence B possesses property
(E2) of a generating set.

B therefore has the properties of a generating set, and hence of a basis of the
topology T. If the underlying set M is countable, then the basis B is also countable.
If M is uncountable, then B is also uncountable.

Example 2 : Metric of the euclidean plane

i c

|
as<b+c

b<c+a

c c=sa+b

B
>

In the euclidean plane R 2, the distance between points has the properties (M1)
to (M4) of a metric :

(1) The distance from a point to itself is 0.

(2) The distance between different points is positive.

(3) The distance from A to B is equal to the distance from B to A.

(4) The length of any side of a triangle is less than or equal to the sum of the
lengths-of the-othertworsidesx=ifithe corners are colinear (area 0), then the
length of one side is equal to the sum of the lengths of the other two sides.
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Example 3 : Bases in the euclidean plane

In the definition of the topology of a euclidean space, open disks were chosen as
the basis elements of the metric topology. This choice is not unique. For example,
open disks or open rectangles may be chosen as basis elements of the topology
in the euclidean plane. However, the disks are usually preferred as a basis of the
euclidean spaces, since they are readily represented using the euclidean metric.
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Example 4 : Discrete metric topology

Let a metric space (M ; d) with the underlying set M := {a, b} and the discrete metric
d be given. The discrete basis of this space contains the e-balls D(a, 1) = {a} and
D(b, 1) = {b}.

The set of all unions of elements of the basis B = {{a}, {b}} is the topology T of the
discrete metric space. The topology is the power set P(M) of the underlying set M
of the space.

T= {w! {a}! {b}, {a,b}} = P(M)
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5.5 POINT SETS IN TOPOLOGICAL SPACES

Introduction : A point x of the underlying set M of a topological space (M;T)
possesses properties with respect to a subset A of M which are determined by the
relationships between the set A and the neighborhood system U (x) of the point x
inthe space (M ; T). These properties lead to the following definitions of point types
and set types.

Point types : Points x of the underlying set M which possess special properties
with respect to a subset A in the space (M; T) form a class called a point type.
Some point types are defined in the following.

Interior point : Apoint x is called an interior point of A if at least one neigh-
borhood U of x is a subset of A.
V (xeU A UCA) (P1)
UeU(x)
Exterior point . Apoint x is called an exterior point of A if at least one neigh-
borhood U of x has no points in common with A.
V (xeU A UnA =29) (P2)
UeU(x)
Contact point : Apoint x is called a contact point of A if every neighborhood
U, of x contains at least one point of A.
A (UnA P3
UiEU(x)( ! =0 (P3)
Boundary point : A contact point x is called a boundary point (frontier point)

of Aif every neighborhood U; of x contains at least one point
y not contained in A.

A V (UnA A A P4

U;eU(x) yEUi( ! =0 yeA) (P4)

Isolated point . Apoint x is called an isolated point of A if there is a neigh-
borhood U of x whose intersection with A contains only x.

V (UnA = P5

ol ) (PS5)

Accumulation point : A contact point x of A which is not an isolated point is called
an accumulation point (limit point) of A.
A (UnA A UNnA={x P6
UiEU(x)( i =0 i = {x}) (P6)
Classification of points : The points of the set M of a topological space (M ; T)
are assigned to the point types with respect to a set ACM as follows :

(1) Every pointin M is either an interior point or an exterior point or a boundary
point. The point cannot be contained in more than one of these point types.
Forexampleyifxisaninteriorpoint, then x is neither an exterior point nor a
boundary point.
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(2) Every contact point of A is either an interior point or a boundary point.

(8) Interior points belong to A, and exterior points belong to the complement
A = M - A. Boundary points may belong to either A or A ..

(4) A point is a boundary point if and only if each of its neighborhoods contains
both points in A and points in A.

Example 1 : Point types of a finite set

Let the underlying set of the topological space (M;T) be M = {w, x,y, z}, and let
the topology be T = {0, {w}, {w,x}, {w,X,y}, {w,x,y,z}}. Then the points of the space
(M ; T) have the following neighborhood systems :

Uw) = {{w}, {w,x}, {w,y}, {w,z}, {w,x,y}, {w,y,2}, {w,z,x}, {w,x,y,z}}
Ux) = {{w,x}, {w,x,y}, {w,x,z}, {w,x,y,z}

uly) = {{wx,y}, {w,x,y,z}}

U@) = {{w,xy,z}}

With respect to the set A = {w,x}, the points have the following properties :

pointw : interior point : {wjcA
isolated point o we{wlcA

pointx : interior point : {w,x} CA
contact point Do {w,xin A= ={w,x,y,z}n A = {w,x}
accumulation point :  {w,x} = {x}

pointy : contact point Do wx,yin A = {w,x,y,z}n A = {w, x}
boundary point : yeA and ye{wxy} {wxyz}

accumulation point 1 {w,x} = {y}

Example 2 : Point types in the real euclidean plane

L] point belongs to A

o point does not belong to A

|

|

|

|

|

I @ neighborhood of the point
|

I —— boundary belongs to A

|
|

——— boundary does not belong to A

interior point  : Py isolated point . Py
exterior point __: Pg accumulation points : P,, P3, P,

boundary points: P;, P,, P, contact points : Py, Py, Py, Py
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The underlying set M of the euclidean plane is R2. The subset A consists of a
semidisk and the point P,. The arc and its endpoints belong to A, the diameter
does not. The properties of the points P, to P of the underlying set M with respect
to the subset A are specified.

Set types : Different subsets of the underlying sets of topological spaces may
have identical properties. For example, there are subsets which consist of points
of the same type. There are also subsets with the special property that they are
formed from other subsets through the same operation. Subsets with identical
special properties form a class, called a set type. In the following compilation of set
types, A is a subset of the underlying set M of a topological space (M ; T).

Open set : Aset A is open if every point x of A is an interior point.
A (xeA = xis an interior point) (A1)
X
Closed set . Aset A is closed if every point of the complement A = M - A
is an exterior point.
A (xeA = xis an exterior point) (A2)
X
Bounded set : Asubset A in a metric space is said to be bounded if every
point x of A lies in a neighborhood D(y, r).
V.V (AcD(y.n) (A3)
yEA rER
Interior of aset : The set of interior points of a set A is called the interior of A
and is designated by I(A).
I(A) := {xeA | xis an interior point} (A4)

Boundary of a set : The set of boundary points of a set A is called the boundary
(frontier) of A and is designated by R(A).

R(A) := {xeA | xis a boundary point} (A5)

Closure ofaset : The union of a set A with its boundary R(A) is called the
closure of A and is designated by H(A).

H(A) := AU R(A) (AB)
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Remarks about the set types :

(1) Every interior point x of A has a neighborhood which is a subset of A. By
definition, this neighborhood contains an open set which contains x and is a
subset of A. The interior points of A are contained in the union of these open
sets. This union is by definition an element of the topology, and therefore an
open set. Hence the interior of A is an open set.

(2) If some of the boundary points of a set A belong to the set A and some of
the boundary points belong to the complement A, then the set A is neither
open nor closed.

(3) Inthe real euclidean space R", a bounded set may be infinite.
(4) The closure of a set consists of the contact points of the set.
Relationships between set types : The following relationships hold between the

interior I(A), the boundary R(A), the closure H(A) and the complement Aofa
subset A of a topological space (M;T) :

(1) The set A is closed if and only if the following equivalent conditions are satis-

fied :
R(A) € A : the set A contains its boundary R(A)
HA) = A : the set A coincides with its closure H(A)
I(A) = A : the complement A is open
(2) The set A is open if and only if the following equivalent conditions are satis-
fied :
RA) nA=2¢0 . the set A contains no points of its boundary R(A)
I(A) =A : the set A coincides with its interior I(A)
R(A) C A : the complement A is closed

(3) The boundary R(A) of a set A has the following properties :
R(R(A)) € R(A) : the boundary is closed
R(A) = R(A) : the set A and its complement A have
the same boundary

R(A) = H(A) n H(A): the boundary is the intersection of the closures of
the set and its complement

(4) The closure of a set is a closed set.
The relationships (1) to (4) are proved by applying the definitions of the point types

and set types and the properties of topological spaces. The proof of (4) is carried
out as an example.
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Proof : The closure of a set is a closed set.
(1) The closure H(A) is the set of interior points and boundary points of A, and

hence its complement H(A) is the set of exterior points of A.

(2) For every exterior point xeM there is an open set By with BynA =0, and
hence By nH(A) = By n (AN R(A)) = By nR(A) € R(A).

(3) If the open set By contains a boundary point y € R(A), then B is a neighbor-
hood of the boundary point y and therefore contains points in A. This contra-
dicts the condition By n A =0 in (2). Thus By contains no boundary points.
From BynH(A)CR(A) and BynR(A) =0 it follows that By nH(A) = 0.

(4) Since Bx nH(A) = @, every exterior point of A is an exterior point of the clo-

sure H(A). Since by (1) the exterior points of A form the complement H(A),

every point x of the complement H(A) is an exterior point of the closure H(A).
Hence the closure H(A) is closed.

Example 3 : Open complement of a closed set in R2

Fr i o e e e m R e e S i |
| M | | M-A |
| | | |
| | | P o 1 :
| | I | |

| A | | | | |
| | | e ——— - |
| | | |
| | | |
i s e | [t t a  E g L s L =

Let the set A in the topological space (M ; T) be closed. Then its complement A =
M — Ais open.

Example 4 : Set types in the real euclidean plane
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setA complement A interior 1(A)
______________ U S EHEES

Y 1 Y 1 y 3

closure H(A) accumulation points boundary R(A)

Example 5 : Boundaries in the one-dimensional euclidean space R

Let:M:besthesset-i<-of realnumbers;and let A be the set O of rational numbers.
Then R(A)= R and R(R) = 0, and thus R(R(A)) = # C R(A).
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5.6 TOPOLOGICAL MAPPINGS

Introduction : The study of the properties of topological spaces requires a defi-
nition of the concept of "topological spaces with identical structure”. Two topolo-
gical spaces are identically structured (isomorphic, homeomorphic) if there is a
bijective mapping between them which preserves structure (is homomorphic) in
both directions. Homomorphic mappings of topological spaces are called continu-
ous mappings. Isomorphic mappings of topological spaces are called topological
(homeomorphic) mappings. Homeomorphic spaces cannot be distinguished by
topological means. Equivalent properties of homeomorphic spaces are topologi-
cal invariants. These concepts are defined in the following.

Continuous mapping : Let (M;T) and (N; S) be spaces with the topologies T
and S. Amapping f : M — N is said to be continuous on M if the preimage f~' (S))
of every open set S; of S is an open setof T.

fis continuous :< /\s (f1(S,)eT)
For a given topology S on N and a given continuous mapping f: M— N, let
A:={f"! (Si)| S;€8} be the set of preimages of the open sets in S. Since f is
continuous, ACT. If A is a proper subset of T, then the subset T — A of open
subsets in T is not determined by S and f. The set A is thus the coarsest topology
on M which renders f continuous. Every topology which is finer than A also renders
f continuous.

Locally continuous mapping : A mapping f : M — N from a topological space
(M ; T) to a topological space (N;S) is said to be (locally) continuous at a point
x €M if for every element Wy of the neighborhood system of f(x) in N there is an
element Uy = f~1(Wy) of the neighborhood system of x in M.

fis continuous atxeM = A V (1 (Wy) = Uy)

A mapping f : M— N between topological spaces is continuous if and only if it is

continuous at every point x of M. This theorem is often used to prove that a function
is continuous.

Proof : f : M— Nis continuous < fis continuous at every point xe M

(1) Letthe mapping f be continuous. Let W, be a neighborhood of f(x) in N. Then
there is an open set Sy S such that f(x) € Sy CWy. Since the mapping f is
continuous, there is an open set Ty = f~(Sy) such that xe T C f~(Wy).
Hence forreverysneighborhoodsW, of f(x) in N there is a neighborhood
U, = (W, ) of x in M such that f is continuous at the point x.
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(2) Letthe mapping f be continuous at every point xe M. Let S, be an arbitrary
open set in S. Then f7'(S,) is a neighborhood of every point x € f~'(S,).
Hence there is an open set Ty in T such that xe Ty C f“(S ). The set
(S D= U Ty is thus a union of open sets and is therefore |tself an open
set. Smce the preimage of every open set S, in S is an open set - (S )in M,
the mapping f is continuous.

Composition of continuous mappings : Let (A;R), (B;S) and (C;T) be
topological spaces. Let the mappings f: A— B and g:B — C be continuous.
Then the composition g o f: A — C is also a continuous mapping.

(@eH™(T) = F7(g7(T)) = 17(S,) = R

Topological mapping : Let(M;T)and (N;S) be topological spaces. A mapping
f:M— N is said to be topological (homeomorphic) if f is bijective and both f and
the inverse mapping f~! are continuous mappings.
f is topological : A ((T)eS) A~ A 1S )eT
s topological <> A\ (H(T)ES) A A ((S,)ET)
Note : In the definitions of continuous mappings and their composition, f“(Si)
designates the preimage of S;. Itis not assumed that the mapping f has an inverse.

By contrast, in the definition of a topological mapping ' is the inverse of the
mapping f.

Homeomorphic spaces : The spaces (M ; T) and (N; S) are said to be homeo-
morphic if there is a topological mapping f : M — N. The homeomorphism of the
spaces (M;T) and (N; S) is designated by M ~ N. Homeomorphic spaces cannot
be distinguished by topological means : They have identical topological structure.

Topological equivalence : The homeomorphism ~ of topological spaces
(A, Tp): (B, Tg), (C, T ), ... is an equivalence relation. A set of topological spaces
is partitioned into classes of homeomorphic spaces.

(1) Therelation ~ isreflexive since the identity mapping i : A — Ais atopological
mapping. The mapping i possesses the inverse i and is continuous. Every
topological space is homeomorphic to itself.

(2) The relation ~ is symmetric since for every topological mapping f : A— B
there is a topological mapping g: B — A. The mapping g is the inverse of f
and is continuous. The inverse of g is the continuous mapping f.

(8) Therelation ~ istransitive: A~B and B~C imply A—C, since for topologi-
cal mappings f:A—=B and g:B—-C :
(@) gofisbijectivesince (gof)™ = f'og™ and g,f are bijective.
(b)mmgrosfiis,continuous;sincesgeand f are continuous.
(¢) (g o f)!is continuous since g~' and ! are continuous.
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Topological invariant : A property of a topological space (M;T) is called a
topological invariant if every space (N ; S) homeomorphic to (M; T) has the same
property. Several topological invariants are defined in the following sections.

Open mapping : Let (M;T) and (N; S) be topological spaces. A mapping
f: M— N is said to be open if the image of every open set T, of T is an open set
of S. If the mapping f is bijective, continuous and open, then the spaces Mand N
are homeomorphic.

fis open < /T\f(Ti)eS
Closed mapping : Let (M;T) and (N; S) be topological spaces. A mapping

f: M— N is said to be closed if the image of every closed set in M is a closed set
in N.

Discrete mapping : A continuous mapping f: M — D from a topological space
(M ; T) to a topological space (D ; S) is said to be discrete if the topology S on the
target D is discrete.

Example 1 : Topological mapping

04 Y
L Nt
| Bg | 4 \\
| ol | / \
1 =3 | /
H | » 1 !

—ai ja r -2a \ l 2a X

| | N Bk /
| | \‘-‘_H_o__‘//
(N S &ﬁ?/’

-1

|

f: M—=N with f(r,0) = (x,y) and = (r+a)cos (6 +m)

X
y = (r+a)sin (6 +mn)

The mapping f : M — N is topological : It is continuous and has a continuous in-
verse. Open sets of N are mapped to open sets of M. Open sets of M are mapped
to open sets of N.
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Example 2 : Non-topological mapping
Let (M;T) and (N; S) be topological spaces with the following sets :

M = {a, b, c} T = {0, {a}, {c}, {a,b}, {a,c}, {a,b,c}}
N = {X! Y, Z} S = {@: {X}! {Xiy}r {lerz}}

Letthe mappingf: M — N be bijective with f(a) = x, f(b) =y, f(c) =z. The mapping
f is continuous since every open set S; of S has an open preimage T in T :

1(0) =0 1 ({xy) = fab}
({x) = {a) ! ((x,y.2}) = fa,b,c}

The inverse mapping g: N — M with g(x) =a, g(y) =b, g(z) =c is not continuous
since the open sets {c} and {a,c} of T do not have an open preimage S; in S :

g '{c) = {z} is not an element of S

g '{a,c}) = {x,z} is notan element of S

Although the mapping f: M — N is continuous and has an inverse, itis not topologi-
cal since f~1: N — M is not continuous.

Example 3 : Discontinuity of the Heaviside function
(x)

b

>

¥ X

The Heaviside function is a mapping f:R — {a, b} given by

x<0 = fx)=a
x=0 = fx)=0>b

Let the space R be equipped with its natural topology. Let the topology of {a, b} be
discrete, so that {a} and {b} are open sets. The preimage of the open set {a} is
f~'({a}) = 1-=,0[ and hence an open set. The preimage of the open set {b} is
f7({b}) = [0, [ and hence notan open set. On the real axis with its natural topol-
ogy, the Heaviside function is therefore not a continuous function.
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Example 4 : Topological invariance
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The mapping f: 1-1,1[ = R with f(x) = tan %X is topological. For every point
P of the graph the mapping y = f(x) may be inverted to yield x = f~!(y). The open
sets S and T are mapped to each other. The set 1 -1, 1[ is bounded, the set R
is not bounded. Although the sets ] -1, 1[ and R are homeomorphic, one of the
sets is bounded and the other is not. Boundedness is not a topological invariant.

The example shows that boundedness is a metric property which cannot be
described by topological concepts alone. This is hardly surprising, since the metric
topology is derived from the metric, and thus the metric contains more information
than the topology.
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5.7 CONSTRUCTION OF TOPOLOGIES

5.7.1 FINAL AND INITIAL TOPOLOGIES

introduction : Topologies for new spaces may be generated using a mapping
of known topological spaces. In applications, this procedure is used particularly to
construct continuous mappings. Continuous mappings are the basis for construct-
ing homeomorphic spaces. Mappings with special properties generate topologies
with special properties.

If a mapping f: M — N and a topology T on M are given, the question arises for
which topologies on N the mapping f is continuous. To answer this question, the
final topology Sg,, on N is constructed. An example of a final topology is furnished
by the quotient topology of a quotient set M/E of the underlying set M. The sum
topology on the union of disjoint sets is closely related to final topologies.

If a mapping f: M — N and a topology S on N are given, the question arises for
which topologies on M the mapping f is continuous. To answer this question, the
initial topology T;.; on M is constructed. An example of an initial topology is fur-
nished by the relative topology of a subspace. The product topology of a cartesian
product is closely related to initial topologies.

The essential difference between final and initial topologies is the following : In the
construction of a final topology, the topology on the domain of the mapping is
known and the topology on the target is to be determined, while in the construction
of an initial topology the topology on the target is known and the topology on the
domain is to be determined.

Final topology : Let (M; T) be a space with known topology T, and letf : M—N
be a surjective mapping. Let the image of an open set T, in Tbe S;=f(Ty). The
set of the images of T is called the final topology induced (generated) on N by
f and T and is designated by S, .

Sin = {f(Tm) | TmeT}

| h B ISy
| i —t————— |
| = | "
| - | s |
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R —— | | T, |
M N
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The mapping f : M — N between the spaces (M ; T) and (N; S;,) is continuous
by virtue of the construction of S;,. The mapping f is also continuous if a subset
of Sy, is taken as the topology on N. For a given topology T on M, Sy, is the finest
topology on N for which the mapping f is continuous.

If the mapping f is bijective, every open set S; is the image of an open set T;. Then
the inverse mapping f~': N — M is also continuous with respect to the topologies
T and Sy, . For a bijective mapping f, the spaces (M; T) and (N ; Sy, ) are therefore
homeomorphic.

Quotient topology : Let (M; T) be a topological space, and let E be an equiva-
lence relation in M. The canonical mapping k : M — M/E is a surjective mapping
from the underlying set M to the quotient set M/E. It induces a final topology Tg
on the quotient set. The final topology Tg is called the quotient topology with
respect to the equivalence relation E. The space (M/E ; Tg) is called a quotient
space of the topological space (M;T).

k: M—ME
Te := {k(Tm) | TmeT}

Sum topology : Let (M; T) and (N; S) be topological spaces whose underlying
sets are disjoint, that is MNN = @. The union MuN is taken as the underlying set
of a new topological space. The finest topology V is chosen on MUN which renders
the injections iy, : M — MuNand iy : N = MUN continuous. This is an extension
of the concept of a final topology.

iy © M—=MuUN with iy(@ = a
iy © N—=MuN with iy (b) =b
Since V is the finest topology which renders iy, and iy continuous, the basis B of

V contains exactly the open sets T, €T and S, € S. If the basis contains elements
T, and T, of T, then it also contains their intersection T, N T;,, since T is a topology.

B:={B;| BT v B;eS}
By property (T3) of topologies, V also contains all unions of elements of B. The

space (MUN ; V) is called the topological sum (union space) of the topological
spaces (M; T) and (N; S). The topology V is called the sum topology (union

topology).
V:={ U B;|BcB}
B,eB
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Example 1 : Quotient topology

Let (M; T) be a topological space, and let E be an equivalence relation which
partitions the underlying set M into the classes [a] and [1]. The underlying set M/E
and the topology Tg of the quotient space follow from the definition of the canon-
ical mappings kym: M—M/E and k;: T — Tg.

a 0
b = (M i‘\‘\ 0
1 S ey (a,b, 1) )
2 (1.2} ig{[auﬂ}
{a, b, 1,2}
M > ME T — T
Ken Kr

Example 2 : Sum topology

Let the topological spaces (M; T) and (N ; S) be given :
M = {ab} T ={0,{a}, {b},{a,b}}
N = {1,2} S ={0,{1}{1.2}

Then the topological sum (MUN ; V) has the following underlying set M u N, basis
B and sum topology V :

MuN = {a,b,1,2}

B = {BeT v BeS}
= {{a}, {b}, {a,b}, {1}, {1,2}}
V. = {U B|BcB}
B,eB

= {0,{a}, {b}, {a,b}, {1}, {1,2},
{a,1},{a,1,2},{b,1},{b,1,2},{a,b,1},{a, b,1,2}}
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Initial topology : Let (N ; S) be a space with known topology S, and letf: M—N
be a mapping. Let the subset of M which f maps onto the open set S,eS be
T = f“(Si). Since the mapping f is generally not bijective, f~' here does not desig-
nate the inverse of f: A pointin S; may be the image of more than one pointin T;.
The set of preimages T, of the elements of S is called the initial topology induced
(generated) on M by f and S and is designated by T

Tt 1= {f7%(S) | S;e8}

init -

[ g e — | r—a_ 1
| T2 L | St
| 4——»—+ BB |
| = = |
E o . | s |
| T2 | | Sz |
| ] |
| | |
B i i i g i g - | | G E——— |
M 5 N

The mapping f: M — N between the spaces (M; T, ;) and (N; S) is continuous
by virtue of the construction of T,;;. The mapping is also continuous if a finer topol-
ogy than T;,;; is chosen on M. The initial topology T, is the coarsest topology on

M which renders f continuous given the topology S.

If the mapping f: M — N is bijective, the spaces (M ; T,,; ) and (N ; S) are homeo-
morphic, since the mapping f and its inverse f~': M — N are continuous.

Relative topology : Let (N; S) be a topological space, and let MC N be a subset
of N. The coarsest topology T on M is chosen which renders the injectioni: M — N
with i(a) = a continuous. This is the initial topology T induced on M by i. If M
contains only a subset of the points of an open set S, €8S, then the preimage of S,
is the intersection Mn S, . The space (M ; T) is called a subspace of the topological
space (N; S). The topology T is called the relative topology (subspace topology).

i: M—=N with i(@=a
T := {MnS,| S;eS}
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Product topology : Let(M; T)and (N; S) be topological spaces. The cartesian
product M x N is taken as the underlying set of a new topological space. The
coarsest topology P on M xN is chosen which renders both of the projections
Py :MxN—M with py,((a,b)) =a and py: MxN—N with py((a, b)) =b con-
tinuous. This is an extension of the concept of an initial topology.

To determine a basis for the topology P, cartesian products T, x S, of open sets
T,eTand S, €S are considered. Each of these products is a set of ordered pairs
(t, 8). The set of cartesian products T, x §, which can be formed with the elements
of Tand S is designated by T xS :

T, xS, = {(ts) | teT, A seS,}

TxS = {T, xS | T,eT A S,eS}

The set T x S is suitable as a basis of a topology if for any two elements T; x S

and T, x S, it also contains their intersection. The intersection of the elements is :

(T,

xS ) N (TyxS,) = {(t,s)| (ts)eT, xS A (t,8)€Ty xSy}

{(t,s) |teT,nT, A seS,NnS,}
(Tin Ty) x (SN Sp)

Since by definition T, =T, n T, is an element of the topology Tand S,,= S, N S,
is an element of the topology S, T x S contains the intersection T, x S, of T, x S,
and T, x S,,. Hence T x S is suitable as a basis.

The set B := T xS is chosen as a basis of the topology P on the underlying set
M xN. Then the projections p,, and py, are continuous, since every open set in
T and every open set in S has a preimage in B and hence in P. The topology P con-
tains all unions of elements of B.

Py : MxN-M with  py((ab)=a
Py ¢ MxN-—=N with  py((a,b)) = b
B:= Tx8={T;xS | T,eT A §, S}
{BiLéJB" B, | B'eB}

The space (M x N ; P) is called the product space of the topological spaces (M; T)
and (N; S). The topology P is called the product topology. P is the coarsest
topology on M x N which renders py, and p, continuous. For if the basis B does
not contain all sets in T x S, then either at least one intersection of elements of B
is not contained in B, or at least one of the projections p,,and py, is not continuous.
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Example 3 : Relative topology of euclidean space

Letthe euclidean space R 3 be equipped with its natural topology T2. The open sets
of the basis of T are open balls. The intersections of the open balls with the euclid-
ean plane R?2 are open disks, which are the basis elements of the natural topology
on R2, The intersections of the open balls with the euclidean line R' are open
intervals, which are the basis elements of the natural topology on R'. The spaces
R1 and R2 are subspaces of R3: They are equipped with the relative topology.

Example 4 : Product topology
Let the topological spaces (M; T) and (N ; S) from Example 2 be given :
M = {a,b} T = {@: {a}y {b}Y{aib}}
N = {1,2} S = {@1{1}’{112}}
Then the product space (M x N ; P) has the following underlying set M, basis B and
product topology P :
MxN = {(a,1),(a,2), (b,1), (b,2)}
B = {TixSleieT A S €S}
{0.{a}x{1}, {a}x{1,2}, {b}x {1}, {b}x{1,2},
{a,b}x {1}, {a,b}x{1,2}}
{0,{(a,1)} {(a,1), (a,2)}, {(b, 1)}, {(b,1), (b,2)},
{(a,1),(b, 1)}, {(a,1), (a,2), (b,), (b,2)}}
{ U B |BeB}
B,eB
{0.{(a, )}, {(b, 1)},
{(a,1),(a,2)}, {(b,1), (b,2)}, {(a,1), (b, 1)},
{(a,1),(a,2),(b,1)}, {(a,1), (b, 1), (b,2)}.
{(a,1),(a,2),(b,1), (b,2)}}

<
I
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5.7.2 SUBSPACES

Introduction : The concept of the relative topology of a subset of a topological
space introduced in Section 5.7.1 leads to a more precise treatment of the point
types and set types defined in Section 5.5. The interval ]-1,1[, which is open in
R1, is considered as an example. In the euclidean space 2, this point set is not
open, for at an arbitrary point x € ]-1,1[ the open set D(x, €) of the euclidean
space R? contains points of X2 which do not lie in the interval 1-1,1].

D (x, ].) 2
° : R

The example demonstrates that the definitions and rules of Section 5.5 hold only
with respect to the subspace under consideration and its relative topology. Proper-
ties of subspaces are treated in this section.

Subspace : A topological space (M; T) is called a subspace of the topological
space (N; S) if Mis a subset of N and T is the relative topology induced on M by S.

T = {S;nM | S;eS}

Interior point : Let A be a subset of a subspace (M; T). Then a point xeM is
called an interior point of A in M if there is an open set T; of the relative topology
T which contains x and is contained in A.

x is an interior pointof AinM < TVT (xeT,CA)
€

Exterior point : Let A be a subset of a subspace (M; T). Then a point xeM is
called an exterior point of A in M if there is an open set T; of the relative topology
T which contains x and is contained in the complement A=M — A.

x is an exterior pointof AinM = VT (xeT,cM-A)

Boundary point : Let A be a subset of a subspace (M; T). Then a point xeM
is called a boundary point of A in M if every open set Ty of the relative topology T
which contains x contains at least one point of A and one point of A.

x is a boundary pointof Ain M <> T/\T(T,(mA¢(Z) A TyxnA=0)

X
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Interior : Let A be a subset of a subspace (M; T). The set of all inner points of
A in M is called the interior of A in M and is designated by I(A) or I,,(A). The
interior of A is the union of the open sets T, € T which are contained in A.

IA) = U (T.CA

® = Y Tcn
Exterior : Let A be a subset of a subspace (M; T). The set of exterior points of
A in M is called the exterior of A in M and is designated by E(A) or E(A). The

exterior of A is the union of the open sets T, € T which are contained in A=M — A.

E(A) = T.LéT (T, cM-A)

Boundary : Let A be a subset of a subspace (M; T). The set of all boundary
points of A in M is called the boundary of A in M and is designated by R(A) or 6A
or d,,A. The boundary of A is the underlying set M without the interior and exterior
of A.

R(A) = 0A = M—I(A) —E(A)

Closure : Let Abe a subset of a subspace (M; T). The set of all inner points and
boundary points of A is called the closure of A in M and is designated by H(A) or
Hy (A). The closure of A is the underlying set M without the exterior of A.

H(A) = M —E(A)

Properties of subspaces :

(U1) Ifthe topology S of the space (N ; S) has a basis A, then the topology T of the
subspace (M; T) has the basis

B ={B;=ANM]| A €A}

(U2) If(M;; T,)and (M,; T,) are disjoint subspaces of (N ; S), then their topologi-
cal sum (M, U M,; V) with the sum topology V is also a subspace of (N; S).

(U3) If (M; T) is a subspace of (N; S) and (N; S) is a subspace of (U; R), then
(M; T) is a subspace of (U; R).

(U4) A subset A of a subspace (M; T) of a topological space (N ; S) is openin M

if and only if there is an open set P in N such that A is the intersection of M
and P :

AisopeninM <« V (A =MnP)
pes

(U5) A subset A of a subspace (M; T) of a topological space (N; S) is closed in
M if and only if there is a closed set C in N such that A is the intersection of
Mand C:

AlisclosedinM =2V i(A = MNnQC)
Ces
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Proof : Properties of subspaces

(U1)

(U2)

Every element S, of the topology S is a union U A, of elements of the basis A.
For the element S, of S there is a corresponding element T, =Mn§, of
the relative topology T. Therefore :

T, =Mn§, = MmLiJAi = LiJ(MmAi) = Llj B
Every element T, €T is a union of elements B, = A;n MeB. Since for two
elements A, and A, the basis A also contains their intersection A, = A; N A,
it follows that for two elements B, = A,nM and B,,= A, nM the set B also
contains their intersection B,n B, = (A,nM)n (AN M)= (ANnA)NM.
Hence B is a basis of the topology T.

The topologies of the subspaces are T, ={S;nM,} |S;€S} and T, =
{Smn M, | S, €S}, respectively. A general element of the sum topology V
is {S;"My}u {S,,nM,} ={S;uS,}n{MUM,}. Since S; and S, are
elements of S, S;uS,, is by definition an element of S, and therefore
{S,u S} {M,U M,} is an element of the relative topology of S with respect
to MU M,. Hence (MU M, ; V) is a subspace of (N ; S).

By definition, the underlying sets of the spaces satisfy MC N C U. The topolo-
gies of the subspaces are T = {§;n M | S,eS}and S={R,n N | R, eR}.
Substituting §;=R;n N yields T, =§,n M=(R,nN)n M=R;n (NN M) =
R;n M. Therefore T={R,n M [ R; €R}. Hence T is the relative topology in-
duced on M by R, and (M; T) is a subspace of (U; R).

Let the set A be open in a subspace (M; T) of (N; S). Then for every point
x €A there is an open set Ty = Sy "M C A which contains x, so that x € Sy.
Let P be the union of all open sets Sye S which contain a point xeA. Then
P is an open set in N, since P is a union of open sets. The intersection of P
with the subspace M is a union of open sets of the relative topology T :

P= U S«
XEA
PAM = U (SxnM) = U Tx
xXEA xXEA

Tx € A implies PNnMC A. The fact that every point x A is contained in an
open set Ty implies ACPNM. From AC PnMC A it follows that A=Pn M.
Hence there is a set P open in N whose intersection with the subspace M is
the given set A open in M.

Conversely, let P be an open set in the space (N; S) and A=MnP. Then for
every point xe AC P there is an open set SyeSC P which contains x. By
definition, the relative topology T of the subspace (M; T) contains the open
set Ty = Sy NM. Since xeAandx e Sy, alsoxeMandxeMn Sy = Ty. From
Tx €M and Tx C SxC P it follows that T, C Mn P = A. Thus for every point
xeArtheresisranjopenssetsTxawhich contains x and is contained in A. Hence
Ais open in M.
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(U5) Let the set A be closed in a subspace (M; T) of (N; S). Then the set M — A
isopenin M. By (U4) there is an open set Cin N suchthatM — A =Mn C. This
yields the set C =N — C, which is closed in N and satisfies A =M - (Mn C) =
Mn(N - C)=MnC.

Conversely, let C be a closed set in the space (N; S) with A=MnC. Then
the set C=N-—-C is open in N. By (U4), the set MNnC=Mn(N -C) =
M—(MnC)=M—Ais open in M. Hence the set A is closed in M.

Dense subspace : A subspace (M; T) of a topological space (N; S) is said to
be dense in N if N is the closure of M. A subspace M is said to be nowhere dense
in N if the interior of the closure of M is empty.

M dense in N = H(M)
M nowhere dense in N = I(H(M))

N
0
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5.7.3 PRODUCT SPACES

Introduction : The topology of the product of two topological spaces is defined
in Section 5.7.1. In this section this concept is extended to the product of a finite
number of topological spaces. Rules for continuous mappings to such product
spaces are derived.

Product space of a finite number of spaces : Let a finite number of topological
spaces (A; R),...,(Z; S) be given. The elements of the underlying sets are desig-
nated by a;€A,....z,€Z, the open sets of the topologies are designated by
R, €R,...,8,€S. The cartesian product X := A x ... xZ is taken as the underlying
set of a new topological space. The elements of X are n-tuples x = (a; ,...,2,, ). The
product topology is chosen to be the coarsest topology P which renders all projec-
tions p, : X— A with p,(x) = &; to p,: X —=Z with p, (x) = z,, continuous.

The set of all cartesian products R;x ... x S, whose factors are open sets of the
topologies R,...,S is chosen as a basis B of the topology P. This set of cartesian
products is suitable as a basis since, as in the special case of two spaces, the
intersection of any two open sets R;x ... xS, and R, x ... xS, is also an open
set ij e XSy

B ={R;x..xS, | ReRa..1S,eS}
Rx..xS, = {(a,..2,) | 8 €R, Ar..n z,€S,}

(Rix ... x8) n(Ryx..x8,) = (RinRYx..x(8,nS)
Ryx ... x§y

il

The product topology P contains all unions of elements of the basis B. The space
(Ax ... xZ;P) is called the product space of the topological spaces (A ; R),...,
(Z ; S). The topology P is the coarsest topology on X =A x ... xZ which renders
the projections p,,...,p; continuous.

P = | B
(Y, B B'eB)

Py X—=A with p,(x) = is continuous

8
py: X—=2Z with p,(x) = z, iscontinuous

Continuous mappings to a product space : Let a topological space (M; T)
and the product space (X ; P) of a finite number of topological spaces (A ; R),...,
(Z; S) be given. A mapping f : M — X to the underlying set X = A x ... xZ of the
product,spaceyis continuousyif;and,only if the compositions pyof: M—A to
pzof: M — Zinvolving the projections p, : X — Ato p, : X —Z are continuous.
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M_——f 5 x

pm‘ lpA
A

Proof : Continuous mappings to a product space

(1) Let the mapping f be continuous. By the definition of the product topology,
each of the projections p,,...,p, is continuous. Therefore the mappings
paof,...pz of are compositions of continuous mappings, and hence con-
tinuous.

(2) Let each of the compositions p,of,...,p; o f be continuous. Itis to be proved
that for the mapping f : M — X the preimage of every set open in the space
(X; P) is open in M. To prove this, it is sufficient to show that the preimage
of every element of the basis B ={R;x ... x Sn| R,eRa ... A8,e8}isopen
in M. By the definition of a product topology, p, : X — Ais continuous, so that
the preimage R;x ... x S, ofthe set R,openinAisasetopeninX.Since pyof
is continuous by hypothesis, the preimage of B; in M is an open set T, . But
by the definition of the composition p,of, the open set T, C M is also the
preimage of the open set R;x ... x §, € B under f. Hence the mapping f is
continuous.

Continuous mapping between product spaces : Letthe mappings f,: M, —
N,and f,: M, — N, be continuous. Let the cartesian products M; x M, and
N, x N, be equipped with the product topologies. Then the mapping g: M, x M,
— Ny x N, with g(a,b) = (f;(a), f, (b)) is continuous.

Proof : Continuous mapping between product spaces

Let S, x S, be an element of the basis of Ny x N,. Since N; x N, is equipped
with the product topology, the projections S; = p;(S; x S,) and S, = p,(S; x Sy)
are open sets. Their preimages f;1(S1) and f? (S,) are open sets since f; and
f, are continuous. Since M, x M, is equipped with the product topology, the
preimage g~(S;xS,) = 1(S,)) x ;'(S,) of S;x S, with respect to g is an
open set of M, x M,. Hence the mapping g is continuous.
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5.8 CONNECTEDNESS OF SETS

5.8.1 DISCONNECTIONS AND CONNECTEDNESS

Introduction : A physical body is connected if forces can be conveyed between
its parts. By contrast, mathematical connectedness is a topological property. The
connectedness of two sets can only be studied if they are subsets of the underlying
set of a topological space.

To define the connectedness of two sets, it is not sufficient to consider the inter-
section of these sets. For example, let A be a set with a boundary point x which
does not belong to A. Let the same point x be a boundary point of the set B, and
let it be contained in B. Let the intersection An B be empty. Then the union AuB
contains the point x although A n B is empty. Hence the sets A and B are connected
although their intersection is empty.

The mathematical definition of connectedness is based on the concepts of discon-
nections and separated sets. In a disconnection, the open sets of the topology of
the space are used to assess connectedness. A set is connected if there is no
disconnection for the set. For separated sets, the topological set types of boundary
and closure are used to assess connectedness. In contrast to disjoint sets, sepa-
rated sets contain no points of each other’s closure. A set is connected if it is not
the union of non-empty separated sets.

The concepts of disconnections, separated sets, connectedness of a set and con-
nectedness of a space are treated in this section. Disconnections and separated
sets are constructed from given sets. Different equivalent definitions of the con-
nectedness of sets are presented.

Disconnection of a set : Let A be a subset of a topological space (M;T), and
let T,,T, be open sets of the topology T. The sets T, and T, form a disconnection
of the set Ain the space (M; T} if the intersections AN T, and AN T, are non-empty
disjoint sets whose union is A. The disconnection is designated by T,&T,.

T T T T T T e T T T T T T T T ]I
| g M
| e ———— =¥ |
1o | : T :
I

i REE N
I — | |
: | S SR i
I I |
L J
(AnTy). # 1] (A0T1) o (AOT2) =0

(AnT,) = 0 (AnT)U (ANT,) = A
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Properties of a disconnection : AsetA C Mpossesses a disconnection T,&T,
in the topological space (M; T) if and only if it possesses a disconnection S, &S,
in the subspace (A ; S) with the relative topology S = {S; | S;=AnT, A T, eT}.
The set A possesses a disconnection in the subspace (A; S) if and only if there is
aset S; €8 with § c S, c A which is both open and closed in (A; S).

Proof : Properties of a disconnection
(1) Let T,&T, be adisconnection of the set A in the space (M; T). The open sets
S;=AnT, of the relative topology S are used in the defining properties of the
disconnection T,&T,.
(AnNT) = 0 A (ANT)N(ANT,) = 0 A
(AnT,) = 0 A (AnT) U (ANT,) = A <
Si#z0AS =20 A S NS,=0 A SUS,
By definition, the subsets S, and S, form a disconnection S, & S, of Ain the
subspace (A;S), since S;=S;n A. From §,nS, =0 and S 1US, =Aitfol-
lowsthat S;=A-S, = 82 and S;=A-S,=5,.ThenS,=pand S, =S,
implies S, # 0, and S, # 0 and S, = S, implies S, = 0.

S;#0 ASy,=0 A S;=8S, A S,=85, <
S;#0 ASy, =0 AS;=0 A Sy=0

It follows from S1 S, that 81 is an open set of the relative topology S. Since
S; and S1 are open sets in (A; S), the set S, is both open and closed. From
S, =0 and S, =A-S, =0 it follows that (Z) c S, c A. Thus for the discon-
nect|on T,&T, there is a set f c S, c A which is both open and closed in
(A;S).

(2) Letthe set S, with p c S, A be both open and closed in the subspace
(A;S). Then S, = § and S; = A—S, = 0. It follows from S, =S, that S, is
an open set in S and S, # (. The equwalences in (1) show that T1&T isa
disconnection of A in (M;T).

Separated sets : Two subsets A, B of a topological space (M; T) are said to be
separated in the space (M; T) if the following conditions are satisfied :

(1) The sets A and B are disjoint : AnB =9

(2) A contains no boundary pointof B : AN R(B) 0

(8) B contains no boundary pointof A : BnR(A) = 0

These conditions are satisfied if and only if A does not contain any points of the
closure of B and B does contain any points of the closure of A :
A, B are separated sets in (M; T) -
AnB.=0_A_ AcRB)=0.A BNRA) =0 <
AnHB) =0 A BnHA) =10
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Properties of separated sets : Two subsets A, B of a topological space (M; T)
are separated in (M; T) if and only if they are separated in the subspace (AUB ; S)
with the relative topology S = {(AUB) N T, ] T €T}

Proof : Properties of separated sets

(1) Let the subsets A, B be separated in (M; T). Let their closures in the space
(M; T) be H(A) and H(B), respectively. Then the defining properties of sepa-
rated sets imply that AnH(B) = ¢ and BnH(A) = {. Let the closures of the
sets A and B in the subspace (AUB ; S) be H(A) and H,(B), respectively.
The closures H,(A) and H,,(B) contain the points of the closures H(A) and
H(B) which are contained in the underlying set AUB :

Hy(A) = (AUB) nH(A) = (ANH(A))U(BNH(A) = A
H,(B) = (AUB)NH(B) = (BNH(B))U(BNH(B) = B

The sets A and B are separated in (AN B ; S) since the closures H,, (A) and
H, (B) satisfy the conditions in the definition of separated sets :

AnH,(B) = AnB =0
BAH,(A) = BnA = 0

(2) Let the sets A and B be separated in the subspace (AUB ; S). Then by
definition AnB = 0. Every point x € M which is not contained in A U B belongs
neither to A nor to B. Such points do not influence the value of AnH (B) or
of BNH(A). Therefore AnH,(B)=0 and BnH,(A)=0 in AuB implies
ANH(B) =0 and BNnH(A) =0 in M. Hence the sets A and B are separated
in (M;T).

Construction of separated sets : Let T,&T, be a disconnection of asetAina
topological space (M; T). Then the intersections AnT, and AnT, are separated
sets (M;T).

Proof : Construction of separated sets

By the definition of the disconnection T,&T,, the sets S; =AnT, and S, =ANnT,
are not empty. The disconnection T,&T, in the space (M; T) corresponds to the
disconnection S,&S, in the subspace (A ; S). Since the sets S, and S, are closed
in the subspace, H(S,) =S, and H(S,) = S,. The definition of a disconnection
implies S;nS, = 0. Hence the sets S, and S, satisfy the conditions for separated
sets in the subspace (A;S) :

SiNH(Sy) = §;nS, =0
S,NH(Sy) = 8,n8; =0
Sincethesets S; =AnT,; and S, =AnT, areseparatedinthe subspace (A;S),

they.are; by.virtue of the,propeities,of.separated sets, also separated in the space
(M;T).
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Construction of a disconnection : Let the non-empty sets A and B be sepa-
rated. Then the complements T, and T, of the closures of B and A form a discon-
nection T,&T, of the set AUB.

T, = H(B)
T,

H(A)

Il

Proof : Construction of a disconnection

(1) The closures H(A) and H(B) are closed sets in the space (M; T). Hence their
complements are open sets in the space (M;T).
T, = H@B) eT
T, = HA) eT

(2) Since the sets A and B are separated, AnH(B) =0 and H(A)nB = 0. The
complement T, of the closure of B contains the set A, but no point of B. The

complement T, of the closure of A contains the set B, but no point of A. It
follows that :

(AUB)NT, = A
(AUB)NT, = B

() Thesets (AuB)NT, and (AuUB)NT, are not empty because the sets A and
B are not empty. The intersection of the sets (AUB)NT, and (AUB)NT, is
empty, since the sets A and B are separated. Hence the sets T, and T, form
a disconnection T,&T, of the set AU B in the space (M;T).

Connected set : A set A in a topological space (M;T) is said to be connected
if it is not disconnected. The set A is said to be disconnected if one of the following
equivalent conditions is satisfied :

(Z21) The set A can be represented as a union of two non-empty separated sets.
(Z2) There is a disconnection for the set A.

Proof : Equivalence of the definitions of the connectedness of a set

(1) Let the set A be disconnected according to definition (Z1). Then A can be
represented as a union of two non-empty separated sets B and C. The sepa-
rated sets B and C may be used to construct the disconnection T,&T, with

the open sets T; = H(C) and T, = H(B). Hence condition (Z2) is satisfied.

(2) Let the set A be disconnected according to definition (Z2). Then there is a
disconnection T,&T, for A. Using the open sets T, and T,, the non-empty
separatedysetsyAmizpandsAiTzpmay be constructed, whose union is A,
Hence condition (Z1) is satisfied.
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Connected space : A topological space (M; T) is said to be connected if the set
M is connected. The set M is connected if and only if the following condition is
satisfied :

(Z3) Thereisnoset T; with @ C T, ¢ M which is both open and closed in the space
(M;T).

Proof : Connected space

By definition, the space (M;T) is connected if and only if the set M is connected
in (M; T). This is the case if and only if there is no disconnection of Min (M; T). But
by the properties of disconnections, the set M possesses a disconnectionin (M; T)
ifand only if (M ; T) contains a set T, with @ ¢ T, ¢ Mwhich is both open and closed.

Example 1 : Disconnection of a set

Let (M; T) be a space with the underlying set M ={a, b, c,d, e} and the topology
T ={0,{c},{a,b,c},{c,d,e}, M}. Thentheset A = {a,d, e} is disconnected. The
opensets T, ={a,b,c} and T, = {c,d,e} form a disconnection of the subset A.

AnT, = {a}

AnT, = {d,e}
ANTHUMANT,) = A
ANT)INANT,) =0

Example 2 : Separation of sets in the euclidean space R

Let the following subsets of the real axis R ! with the euclidean topology be defined
for a rational numberaeQ :

A = {xeR | x<a} R(A) = {a} HA) = {xe R | x<a}
B ={xeR |x=za} R(B) = {a} HB) = {xe R | x=a}
C ={xeR | x>a} R(C) = {a} H(C) = {xe R | x=a}

The sets A and B are not separated, since the intersection of the closure of A with
B is not empty. Although the intersection A n B is empty, the union A U B is the axis
R including the point a.

HA)NB = {a}
The sets A and C are separated, since the intersection H(C)n A = ) is empty. The

unionA € does notcontainthe pointaof the real axis [ '. The separation s illus-
trated in the following diagram.
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} > 1 >
a R a R
A — 0 A R
B *——— C o SR—
AuB - AuC -0
AnB ] AnC 0
ANH(B) 0 ANnH(C) ]
BN H(A) {a} CnH(A) i}

Example 3 : Discrete disconnected space

The topology of a discrete space (M; T) contains every subset of M as an open
set. For elements a, b,... of M, the one-element sets {a},{b},... are by definition
connected. Every set with more than one element is disconnected. For example,
{a, b} possesses the disconnection {a}&{b}. This is the origin of the term "discrete”.

Example 4 : Disconnected space

Let (M;T) be a space with the underlying set M = {a, b, ¢, d, e} and the topology
T = {0,{a}, {c,d},{a,c,d},{b,c,d,e}, M}. Then Mis the union of the disjoint non-
empty open sets {a}and { b, ¢, d, e}, and is therefore disconnected. The set {a} and
the set{b, ¢, d, e} are both open and closed, since their complements are also con-
tained in T. In contrast to the set M, the subset A = {b, d, e} with the relative topo-
logy {0,{d}, A} is connected, since @ and A are the only subsets of A which are
both open and closed.
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5.8.2 CONNECTEDNESS OF CONSTRUCTED SETS

Introduction : The connectedness of a given setin atopological space is studied
in Section 5.8.1. The properties of sets which are constructed from given con-
nected sets using operations on sets and mappings are treated in the following.

Properties of connected sets and spaces :

(E1) Ifaset Ain the topological space (M ; T) possesses a disconnection T, &T,,
then every connected subset BC A is either entirely contained in T, or entirely
contained in T,. One of the sets BN T, and BN T, is empty.

(E2) The union AUB of two connected sets A and B of a topological space (M ; T)
may be connected or disconnected.

(E3) The intersection AnB of two connected sets A and B of a topological space
(M ; T) may be connected or disconnected.

(E4) The union AUB of two connected sets A and B of a topological space (M ; T)
which are not separated is connected.

(E5) Let a topological space (M; T) be connected, and let a surjective mapping
f : M- N be continuous. Then the topological space (N ; S) is connected.

(E6) Atopological space (M;T) is connected if and only if every discrete mapping
from M is constant.

(E7) In a topological space (M;T), let {A, } be a finite or infinite family of subsets
of M. Let every subset A, be a connected set. Let none of the intersections
A, N A, of two sets from {A;} be empty. Then the union U A; of the sets from
{A;} is a connected set.

(E8) Let each of the topological spaces (M; T) and (N ; S) be connected. Then the
product space (M x N; P) is connected.

(E9) The closure H(A) of a connected set A in a topological space (M ; T) and every
intermediate set Z with AC ZC H(A) are connected.
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Proof E1 : Connected subset in a disconnection

Let a connected set B in a topological space (M ; T) be a subset of a set A€ M with
a disconnection T, &T,. This implies :

AQT1UT2 A BQA = B§T1UT2
T,NT,cA A BCA = T,nT,CB

=
| I

|

|

|

|

|

[

|

|

Let the intersections BN T, and BN T, be non-empty. Then T, and T, form a dis-
connection T, &T,, of B. The definition (Z2) of the connectedness of a set implies
that B is disconnected. This contradicts the hypothesis that B is connected. Hence
either BnT, orBNT, is empty. The set B is either entirely contained in T, or en-
tirely contained in T,

Proof E2 : The union of two connected sets may be connected or disconnected.

A . B A B

AuB connecied 'A uB disconhected

The statement is proved by examples :

(1) On the real axis R each of the closed intervals [0,1] and [2,3] is connected
in itself. By definition (Z1), the union of these intervals is disconnected, since
the intervals are non-empty and separated.

(2) On the real axis R each of the closed intervals [1,2] and [2,3] is connected
in itself. Their union is the connected interval [1,3].

Proof E3 : The intersection of two connected sets may be connected or discon-
nected.

A A

B B
A n B connected A n B disconnected
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The statement is proved by examples :

(1) On the real axis R each of the closed intervals [0,4] and [2,6] is connected
in itself. The intersection of these intervals is the connected interval [2,4].

(2) Inthe real plane R2 the points (x =r cos A, y =r sinA) with 0.5 <r < 1.0 and
0<\A=m form a connected segment K of a circle. The points (x,y) with
-1.0=x<1.0 and 0.0 =y <0.1 form a connected rectangle A. The inter-
section A n K is disconnected by definition (Z1), since it consists of two point
sets, one with x < 0 and one with x > 0, which are non-empty and separated.

Proof E4 : The union of connected sets which are not separated is connected.

Let each of the sets A and B in a topological space (M; T) be connected in itself.
Let their union C:= AuB be disconnected. Then by (Z2) C possesses a dis-
connection T, &T,. For the construction of separated sets it was proved that
CnT, andCnT, are separated sets in (M; T). But by (E1) each of the sets A and
B is either entirely contained in T, or entirely contained in T,. For example, let
AnT,=0and BnT, ={. This implies :

CnT, = (AUB)NT, =(AnT,)U(BNT,y) = ANT,
CnT, = (AUB)NT, =(AnT,)u(BNT,) = BNT,

Since CnT, and CNT, are separated, AnT, and BN T, are also separated. But
by hypothesis in (E4) A and B are not separated. Contrary to the assumption, their
union AUB is therefore connected.

Proof E5 : Theimage of aconnected space under a continuous mapping is con-
nected.

Let the topological space (M; T) be connected. Let a mapping f: M — N be contin-

uous. Then the mapping f induces a topological space (N ; S) with the underlying
set N =f(M) and the topology S ={S;| S,=(T;) A T,eT}.

Letthe space (N ; S) be disconnected. Then there is a set S; with § c S, c N which
is both open and closed in the space (N; S). Since the mapping f is continuous,
the space (M; T) contains a set T, with f(T,) = S, which is both open and closed
in the space (M; T). From § c S, c N and f(M) = N it follows that § c T, c M. Hence
by (Z3) the space (M; T) is disconnected. But (E5) contains the hypothesis that the
space (M; T) is connected. Contrary to the assumption, the space (N ; S) is there-
fore connected.
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Proof E6 : A topological space is connected if and only if every discrete map-
ping from its underlying set is constant.

(1) Let atopological space (M;T) be connected. For an arbitrary discrete map-
pingd: M—D, let yeD be a point for which there is a preimage in M. The
discrete space D contains the set {y}, which is both open and closed. Since
the discrete mapping is by definition continuous, the preimage of the set {y}
in M is also both open and closed. By (Z3), the empty set § and the underlying
set M are the only sets of the connected space (M; T) which are both open
and closed. Since the preimage of {y} is non-empty by hypothesis, the pre-
image of {y} is M. Hence the mapping d is constant.

(2) Leteverydiscrete mappingd: M — D be constant. Let the topological space
(M; T) be disconnected. Then by condition (Z3) there is a set A other than
¢ and M with § cAc M which is both open and closed in (M; T). Hence there
is a discrete mapping d : M — {0,1} with d(A) ={0} and d(M—A) ={1}. This
contradicts the hypothesis that every discrete mapping d is constant. Con-
trary to the assumption, the space (M; T) is therefore connected.

Proof E7 : In a family {A;} of subsets of the underlying set of a topological
space, let each of the subsets A, be connected. Let none of the inter-
sections of two sets from {A, } be empty. Then the union of the sets
from {A,} is connected.

Let each of the subsets A; C M in a topological space (M; T) be connected. Let the
union of a finite or infinite family {A;} of such sets be UA,. Let the mapping
d : UA,—D be discrete. For arbitrary points x,yc UA;, letxe A andyeA. By
(E®), the discrete mappings from the connected sets A, and A are constant :

dA) = {c} A d(Ay) = {cm}

The intersection A, n A, is non-empty by hypothesis. For a point ze A n A in
the intersection of the sets, d(z) = ¢, A d(z) =c,,. Hence:

Ck=Ch=¢C A dx)=dly) =dz2) =c

Since the points x and y are chosen arbitrarily, the mappingd : UA,— D is con-
stant with d(U A;) ={c}. Hence the union U A, is connected by virtue of (E6).
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Proof E8 : The product space of two connected spaces is connected.

Let each of the spaces (M; T) and (N ; S) be connected. For arbitrary points acM
and b €N, consider the subspaces {a} x Nand M x {b} of the product space M x N :

| | MxN |
| | |
ll I{a}xN {
| ! |
I
r { M x {b} }
| | |
I F d
a M

The open sets in M x {b} are of the form T x {b}, where T is open in M. Since the
space (M; T) is connected, by (Z3) only the sets § and M are both open and closed
in M. Thus only the sets # and M x {b} are both open and closed in M x {b}. It fol-
lows by (Z3) that the space M x{b} is connected. The space {a} xN is likewise
connected. The intersection of {a} x N and M x {b} is the point (a,b). It follows by
(E7) that the union Py, of the sets {a} xN and M x {b} is connected.

The product space M x N is the union of sets P, for different points (x,y). Each pair
of sets Pop and Pgy has a non-empty intersection {(a,d),(b,c)}. Since every set in
the family {Pyy } is connected, the pairwise intersection of the sets is non-empty
and their union is the underlying set M x N, it follows by (E7) that M x N is con-
nected.

Proof E9 : The closure of a connected set A and every intermediate set Z with
A C Z C H(A) are connected.

Let the intermediate set Z be disconnected. Then by (Z2) there is a disconnection
T, &T, of Z. By (E1), the connected subset A of Z is either entirely contained in
T, or entirely contained in T,. Let A be contained in T, .

The sets ZnT; and ZnT, are separated. From A C T, and A C Z it follows that
AcCZnT,;. Hence the sets A and ZnT, are separated. Since Z C H(A), the
definition of separated sets yields :

HA) N ZnT,) =0 = ZnT, =0

By the definition of the disconnection T, &T, of Z, however, the set Zn T, is non-
empty. Contrary to the assumption, the intermediate set Z is therefore connected.
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5.8.3 COMPONENTS AND PATHS

Introduction : Spaces are generally not connected. A disconnected space may
however be partitioned into connected components. The concept of a path is use-
ful in determining the components of a space. Every path-connected set is con-
nected. The concepts of component, path and path-connectedness are defined in
the following.

Component : A connected subset A of the underlying set M is called a compo-
nent (connected component) of a space (M; T) if there is no connected subset B
of M which contains A as a proper subset.

. ——— '
M | M |
| A I | B |
| | | |
| o | | IRORE
| X i | |
| | | |
| | I |
S SN P T = S oy vy -
component A A is not a component

Properties of components :
(K1) Every component of a space (M; T) is a closed set.

(K2) The union of all connected subsets of M which contain a common point x of
M is a component of (M;T).

(K3) The components of a space (M; T) form a partition of M.

(K4) If a topological space (M; T) has a finite number of components, then every
component is both open and closed.

(K5) Every connected subset of M is entirely contained in a component of (M; T).

(K6) Every non-empty connected subset of a space (M; T) which is both open and
closed is a component of the space.

Proof : Properties of components

(K1) The closure H(A) of a component A of (M; T) contains the component A and
is connected by virtue of property (E9). By the definition of a component,
however, there is no connected subset of M which contains A as a proper
subset. Hence A =H(A), and the component A is closed.



Topological Structures 213

(K2)

=
&

Let {A,} be the family of all connected subsets A; C M which contain a point
x of the topological space (M;T). Then the union UA; of these sets is
connected by virtue of (E7). Every connected set B which contains U A, also
contains the point x. But every connected set which contains the point x is by
hypothesis a subset of UA;. Hence BC UA; and UA,;C B, and therefore
B = UA,. Since there is thus no connected subset B of M which contains U A;
as a proper subset, UA, is a component of (M;T).

Let{C, } be the set of the components of a space (M ; T) which may be formed
with all points of M by (K2). Then the underlying set M = U C, is the union of
these components. Hence the components form a partition of M if they are
disjoint. Assume that the components C; and C, are not disjoint. Then they
have a common point a in C;n C, . Let the component formed with the point
abe C,. Each of the connected sets C; and C, contains the point a and is
therefore a subset of C,. However, the sets C; and C_ cannot be proper
subsets of C, since they are components. It follows that C,=C;=C_.
Contrary to the assumption, the components are therefore disjoint.

Let the components of the space (M;T) be C,,...,C,. By (K1), each of the
components is a closed set. By (K3), the underlying set M is the union U C;
of the disjoint components. The complement of an arbitrary component C,
is therefore the union of all components except for C, :
C,=U¢GC
izk

The union of a finite number of closed sets is a closed set. The complement
(_3k is therefore a closed set; hence the component C, is open. By (K1), C,
is also closed. Since C, is an arbitrary component, each of the components
C,,...,C, is both open and closed.

Letaset AC Min atopological space (M; T) be connected. An arbitrary point
xeA is contained in exactly one component C; of the space, since by (K3)
the components form a partition of the space. The sets A and C, have the
point x in common. By (K2), the set A is a subset of the component C,.

Let a subset A of a topological space (M; T) be non-empty, connected and
both open and closed. By (K5), the connected set A is entirely contained in
a component C of the space. The component C is connected. By hypothesis
the set A is both open and closed. By (Z3) it follows that A =C; hence A is
a component of the space.

Totally disconnected space : A topological space (M;T) is said to be totally
disconnected if for every two points x,y €M with x =y there is a disconnection
Ty&Tzof MsuchthatxeTyandyeTzaThe components of a totally disconnected
space are the one-point subsets of M.
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Proof : Components of a totally disconnected space

Let two points x = y be contained in the same component C of a topological space
(M; T). Since the space M is by hypothesis totally disconnected, there is a discon-
nection T, &T, of Msuchthatxe T, andye T,. Hence the sets CnT; andCn T,
are non-empty. The disconnection T, &T, of M is also a disconnection of C :

MnT;) U MNT,)= M = Cn((MnTy) U (MnT,)) = CNM
= (CnTy) u (CNnT,) =C

MnT) n MnT,)= @ = Cn(MnTy) n (MNT,) = Cnb
- (CnT,) n (CNT,) = 0

By (Z2), however, there exists no disconnection for the connected component C.
Contrary to the assumption, the component C therefore contains exactly one point.

Locally connected space : A topological space (M;T) is said to be connected
at a point x of the space if every neighborhood of x contains a connected open
set. The topological space (M; T) is said to be locally connected if M is connected
at every point x e M. Every component of a locally connected space is open.

Proof : Open components of a locally connected space

By the definition of local connectedness, an arbitrary point x in a component C of
a locally connected space (M; T) belongs to at least one connected open set Ty
of the space. Since the connected sets C and Ty have the point x in common, it
follows from (K5) that x e Ty C C. For every point x € C there is a connected open
neighborhood T. The union U Ty of these sets yields the component C. Since C
is a union of open sets, C is itself open.

C = U (Tk | xeC)

Path : LetI=[0, 1] bethe closed unitinterval in R, and let a, b be points of a topo-
logical space (M; T). A continuous mapping f:I1—M with f(0) =a and f(1) =b is
called a path from a to b in M. The points a and b are said to be connectable in M.

f:1->M with f0)=a A f(1)=b

a origin of the path
b  endpoint of the path

Connectability of points : Two points a and b in a subset A of a topological
space (M; T) are said to be connectable in A if there is a path f from a to b whose
image is entirely contained in A.

f:1>M with f(0)=a A f1)=b A fI)CA
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The connectability relation is an equivalence relation :

(1) Therelation is reflexive. Every point a is connectable to itself via the constant
path f:1— M with f(x) =a.

(2) The relation is symmetric. If a is connectable to b via the path f, then b is
connectable to a via the path g: 1 — M with g(x) =f(1-x).

(3) The relation is transitive. If a is connectable to b via f and b is connectable
to ¢ via g, then a is connectable to ¢ via the following path :

h(x) = { f(2x) 0 <x<1/2
g@2x-1) 12 =x<1

Path component : The equivalence classes with respect to the connectability
relation are called the path components of the topological space (M ; T). According
to Section 2.4, the path components form a partition of the underlying set M.

Path-connected set : A subset A of a topological space is said to be path-
connected if every pair of points a,b €A is connectable in A.

AN V (f0)=a A f1)=b A f(I) CA)

a€A beA f:I-M

Every path-connected set is connected. Hence path-connected sets possess the
properties of connected sets. There are, however, connected sets which are not
path-connected.

Proof : Every path-connected set is connected

X3

X4
A

If the set A is empty, then it is connected. If A is non-empty and path-connected,
then there is a point a in A which is connectable in A with every point x,, of A.

(1) The unitinterval Iis connected. Since the mapping fr, :1— A with f,(0) =a
and fm (1) = xm is continuous, it follows from (E5) that the image f(I) is
connected.

(2) Since the images f(I) for different points x.,, have the point a in common,
their union is connected by virtue of (E7).

(8)muSinceseverypointsxzofrArisitherendpoint of a path f,,, in A, the union of the
images fm (D) is A.
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Example 1 : Components of a set
Let (M; T) be a space with the underlying set M = {a, b, c,d,e} and the topology
T = {0, {b}, {c,d}, {b,c,d}, {a,c,d, e}, M}.

(1) Mis the union of the disjoint open sets {b} and {a, ¢, d, e}. Hence M is discon-
nected.

(2) The open set {b,c,d} is the union of the disjoint open sets {b} and {c, d}.
Hence {b, c, d} is disconnected.

(3) Eachofthe sets 0, {b}, {c,d}, and {a, c, d, e} is connected, since they are the
only sets which are both open and closed sets in their respective subspaces :

underlying set : @ topology : {0}

underlying set : {b} topology : {8, {b}

underlying set : {c,d} topology : {0, {c,d}}
underlying set : {a,c,d, e} topology : {0, {c,d}, {a,c,d,e}}

The set {c, d}, however, is not a component of the space, since it is contained
in the connected set {a, ¢, d, e}.

(4) The sets {b} and {a,c,d, e} are the components of the space (M; T).
(5) The components {b} and {a, ¢, d, e} form a partition of M.

Example 2 : Totally disconnected space

The set Q of the rational numbers equipped with the relative topology of the natural
topology on R is a totally disconnected space. For two arbitrary numbers a,b e
with a < b there is an irrational number x witha <x <b. The open sets T;:= {pe
| p<x}and T,:={pel | p>x} withaeT, and be T, form a disconnection
T, &T, of . Hence the space 0 is totally disconnected.

Example 3 : Locally connected space

Let (M;T) be a discrete space. Then every one-element set {x} is open and con-
nected. Thus every neighborhood of the point x contains the connected open set
{x}, and hence the discrete space (M; T) is locally connected. For every two points
x =y in M there is a disconnection {x} & {y}. Hence the space (M;T) is totally dis-
connected. Thus the totally disconnected discrete space is locally connected !
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Example 4 : Definition of a path f : I — R?

yA
0 0.5 1.0

4 »a I

3 E lf

2
2

1 (1)

A
0 1 2 3 4 5 6 X

The illustrated path in the euclidean plane R?2 is the following mapping of the
closed unit interval I :

f: 1> R?2 with f@) = (x,y) = (4a+1,3a%2 —a +1)

A origin of the path f
E  endpoint of the path f

Example 5 : Path-connected sets

..

The two illustrated sets are path-connected in the euclidean plane R2. Every point
xin A is connectable with the fixed point a in A. Every point y in B is connectable
with the fixed point b in B.
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Example 6 : A connected set which is not path-connected

y 1.0
0.8
0.6
0.4

0.2

A:
B:

A
® e B
0 0.5 1.0
X
{(x,y)eR? | 0=x=<1 A y=% A neNlN'}
{(x,0)eR? | 05 < x < 1}

Let A be the set of points on the segments joining the origin U of the plane &2 with
the points (1, %). Let B be the closed interval [0.5, 1.0] on the x-axis. The set A is
path-connected, since two arbitrary points X,Y € A can be connected by a path in
A along the segments XU and UY. The set B is path-connected. The set AUB is
connected, since every (x, 0) € B is an accumulation point of A. However, the set
AU B is not path-connected. There is no path with origin in A and endpoint in B
whose image lies entirely in AUB.
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5.9 SEPARATION PROPERTIES

Introduction : The definition of a topological space (M ; T) in Section 5.2 contains
only a few general conditions for the open sets T, of the topology T. Often the points
and the open sets of a topological space satisfy additional conditions. These condi-
tions are defined as separation axioms. The separation axiom determines the type
of the topological space and some of its properties. In particular, the convergence
of nets and sequences (see Section 5.10) in a topological space depends on the
separation axiom which holds in the space. The separation axioms and the spaces
associated with them are defined in the following.

Separation axioms : A relationship between the points x;, the subsets A, and
the open sets T, of a topological space (M;T) is called a separation axiom. The
following separation axioms are considered :

Xy X4 Xy

@ A Ay
X, X, X5 X

@ ® @ A,
To T, T, Ts T,

(Ty) Atopological space is called a T,-space if for any two points x; # x, of the
space there is an open set which contains one of the two points but not the
other.

(Ty) Atopological space is called a T,-space if for any two points x, = x, of the
space there is an open set which contains x, but not x, and an open set which
contains x, but not x;.

(T,) A topological space is called a T,-space (Hausdorff space) if for any two
points x, # X, of the space there are disjoint open sets S, and S, such that
X;€8, and x, € S,.

(T3) A T,-space is called a T;-space (regular T,-space) if for every point x and
every closed set A with x ¢ A there are disjoint open sets S, and S, such that
xe8;and ACS,.

(T4) A T,-space is called a T,-space (normal T,-space) if for any two disjoint
closed;setspAqpandyAsstheresareydisjoint open sets S, and S, such that
A,CS; and A,CS,.
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The separation axioms for the space types T, to T, are designed such that the
separation axiom for the space type T, implies the separation axiom for the preced-
ing space type T;_, . Hence a space of type T, has all properties of spaces of type
T,_ 4. The essential properties of the space types are treated in the following.

To-space : A T,-space has the following properties :

(B1) Every subspace of a T,-space is a T,-space.
(B2) Every product space of two T,-spaces is a T,-space.

Proof B1 : Every subspace of a Ty-space is a T,-space.

Let (M; S) be a T,-space, and let (N ; V) be a subspace with NCM and the relative
topology V. For arbitrary points x; = x, of N there is an open set S, in the space
(M; S) which contains x, but not x,. Thus there is an open set V, =Nn§, in the
subspace (N; V) which contains x; but not x,. Hence (N; V) is a T,-space.

Proof B2 : Every product space of two Ty-spaces is a T,-space.
Let(M;S)and (N;V)be T,-spaces. Let their product space be (W; P) with the un-
derlying set W = M x N and the product topology P. For two arbitrary points x; = x,
in M there is an open set S, in the space (M; S) which contains x, but not x,. For
two arbitrary points y, # y, in N there is an open set V, in the space (N ; V) which
contains y, but not y,. By the construction of the product space, (W; P) therefore
contains the open set P, = S, x V,, which contains the point (x;,y) but not the
point (x,,Y,). Hence (W; P) is a T,-space.

T,-space : A T,-space has the following properties :

(E1) Every T,-space is a Ty-space.
(E2) A topological space is a T,-space if and only if every one-element set in the
space is closed.

(E8) Every subspace of a T,-space is a T,-space.
(E4) Every product space of two T,-spaces is a T,-space.

Proof E1 : Every T,-space is a T,-space.

Let (M;S) be a T,-space. Then for two arbitrary points x; = X, there is an open
set T, in the space (M;S) which contains x, but not x,. Hence (M;S) is a
To-space.
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Proof E2 : One-element sets in T,-spaces

(1) Let(M;T)be a T,-space. For a fixed point x and an arbitrary point y = x of
the underlying set M there is by definition an open set Sy which contains y
but not x. The complement of the one-element set {x} is therefore the union
U Sy of these open sets, and hence itself an open set. Since the complement
M—{x} = U Sy is open, every one-element set {x} in a T,-space is closed.

(2) Let a one-element set {x} in a topological space (M; T) be closed. Then the
complement M—{x} is open. The open set M—{x} contains every pointy # x
in M. This result holds for every choice of the point xe M. Hence (M;T) is a
T,-space.

Proof E3 : Every subspace of a T;-space is a T,-space.

Let(M; S)be a T,-space, and let (N ; V) be a subspace with NC M and the relative
topology V. For every point x eN, {x} is a closed set in M by (E2). By property (U5)
of subspaces, {x} is also a closed set in N. It follows from (E2) that (N;V) is a
T,-space.

Proof E4 : Every product space of two T,-spaces is a T,-space.

Let (M;S) and (N;V) be T,-spaces. Let their product space be (W;P) with
W =M xN and the product topology P. For points x; # X, in M there are open sets
S,,8,&€Sinthe T,-space (M; S) with x, € S; and x, € S, but x; ¢ S, and x, & S,.
Likewise, for points y, =y, in N there are open sets V,,V, €V such that y, eV,
andy,eV,buty, ¢ V,andy,¢ V,. Forthe points (x;,y;) = (X,,Y,) in W this yields
the open sets P, = S, xV, and P, = S, xV, with (x;,y,) € Py and (x,,y,) € P, but
(x4,¥4) & P, and (x,,y,) € P4. Hence (W; P) is a T,-space.

Hausdorff space : AHausdorff space is defined such that every limitin the space

is unique (see Section 5.10). Hausdorff spaces have the following properties :

(H1) Every Hausdorff space (T,-space) is a T,-space.

(H2) A topological space (M; S) is a Hausdorff space if and only if the diagonal
D:= {(x,x)| xeM} is a closed set in the product space M x M.

(H3) Every subspace of a T,-space is a T,-space.

(H4) Every product space of two T,-spaces is a T,-space.

Proof H1 : Every Hausdorff space is a T,-space.

For two arbitrary points x, = x, of a Hausdorff space there are open sets S, and
S,with x,€8; A x,€8, A §;nS, = 0. Since the open set S, contains the point
xyibutinot:xz:and the;opensset:Szcontains the point x, but not x,, the Hausdorff
space is a T,-space.
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Proof H2 : Closed diagonal in the product space of a Hausdorff space

MxM

(1) Let the diagonal D := {(x,x) |xeM} be closed. Then every point (x;,X,) in
M x M with x; # X, lies in the open set M x M - D. The products S, x S, of all
open sets S; of M form a basis of the product topology on M x M ; hence in
particular there is such a basis element with (x;,x;)€S; xS, C MxM-D.
This implies x,€ S, and x, € S,. Since S; xS, contains no point of D, S,
contains no point of S,, so that $;n S, = . Hence the space is Hausdorff.

(2) Letthe space (M; T) be Hausdorff. By the definition of a Hausdorff space, for
arbitrary points x4,X, € M with x; # x, there are open sets S, and S, with
X;€84, X,€ S, and $,nS, = . For an arbitrary point (x;,x,) EMxM-D
there is therefore an open set S;xS, of the product topology with
(X4,X,) €S xS, and S;xS,C MxM-D. Thus every point of MxM-D is
an inner point, so that the complement M x M -D of D is open. Hence the
diagonal D is closed.

Proof H3 : Every subspace of a T,-space is a T,-space.
Let (M; S) be a T,-space, and let (N ; V) be a subspace with N € M and the relative
topology V. For points x, # X, in N there are disjoint open sets §,,S, S inthe T,-
space (M; S) with x, €S, and x,€S,. The sets V, =Nn§, and V, = NN S, are
open sets of the subspace N. Hence :

x,€8; A xyeN = x; € Nn§; =V,

X,€S, A XN = x, € Nn§, =V,

$,nS, =90 = V,nV, = Nn(§;nS,) =0
From x,€V,, x,eV,and V,nV, =0 it follows that (N;V) is a T,-space.

Proof H4 : Every product space of two T,-spaces is a T,-space.

Let (M;S) and (N;V) be T,-spaces. Let their product space be (W;P) with
W =M x N and the product topology P. For points x, # X, in M there are disjoint
open sets S,,S,Sinthe T,-space (M; S) with x; € S; and x, € S,. Likewise, for
points y, =y, in N there are disjoint open sets V,,V,€V such that y, €V, and
Yy, € V,. For the points (x,y4) # (X5,Y,) in W, this yields the disjoint open sets
Py=SyxVyand:Ps=S8sxVawith(xsy,) € Py and (x,,Y,) € Py but (X4,y4) € P
and (x,,Y,) & P4. Hence (W; P) is a T,-space.
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Regular space : Atopological space (M;T) is said to be regular if for every point
x&M and every closed set A c M with x ¢ A there are disjoint open sets S, and S,
such that xe S; and ACS,. A regular space is not necessarily a T,-space. For
example, the set M = {a,b,c} with the topology {8, {a}, {b,c}, M} is a regular space.
However, this regular space is not a T, -space since, for instance, the one-element
set {c} is not closed.

A regular T,-space is called a T,-space and has the following properties :

(R1) Every T5-space is a Hausdorff space.

(R2) A T,-space is regular if and only if the closed neighborhoods of every point
form a neighborhood basis for that point.

(R3) Every subspace of a T;-space is a T;-space.
(R4) Every product space of two T;-spaces is a T;-space.

Proof R1 : Every T;-space is a Hausdorff space.

Let (M; S) be a T;-space. Since the T,-axiom holds in the T;-space, for arbitrary
different points x,,X, € Mthere is a closed set {x,} which does not contain x,. Since
the T5-space is regular, there are disjoint open sets S, and S, with {x,} C S, and
X, € S,. Thus the points x, # X, lie in disjoint open sets. Hence the T,-space is a
Hausdorff space.

Proof R2 : A T,-space is a T5-space if and only if the closed neighborhoods of
every point form a neighborhood basis for that point.

(1) Let the space (M;S) be a T;-space. Since the T,-axiom holds in the
T,-space, for every point xeM there is an open neighborhood U of x. The
complement A=M-U is a closed set. Since the T;-space is regular, there
are open sets S; and S, with xe S, AcS, and S$;nS, = @. The comple-
ment M — S, of the open set S, is closed. Every neighborhood of x contains
anopensetU. SinceM-S, c M- A =U, every neighborhood of x also con-
tains a closed neighborhood M - S,, of x. Hence the closed neighborhoods
form a neighborhood basis for x.

(2) Leta neighborhood basis of closed sets be given for every point x in a topo-
logical space (M; T). Let an arbitrary point x e M not be contained in an arbi-
trary closed set AcM, that is xeM -~ A. Since the set M- A is open, by hy-
pothesis the point x has a closed neighborhood U ¢ M — A which by definition
contains an open set S; with xe S, and S, c U. The open set S,=M-U
contains A and is disjoint from U, and thus also disjoint from S,. Fromx e S;,
AcCS,and §;nS, = 0, it follows that the space is a T;-space.

Proof R3_: Every subspace of a T,-space is a Ty-space.
Let (M;S) be a T;-space, and let (N; V) be a subspace with N C M and the relative
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topology V. Since M is a T, -space, it follows from (E3) that N is also a T,-space.
By (R2), every point xeN has a closed neighborhood basis in M. By definition, a
closed neighborhood U of x contains an open set S, in (M;S) with xe S,. By
property (U5) in Section 5.7.2, the intersection NnU is closed. The intersection
V; =NnS, is by definition an open set of the subspace (N; V). The closed neigh-
borhood NNU of x therefore contains the open set V, in N with xe V. Hence the
intersections of the elements of the neighborhood basis of x with N again form a
closed neighborhood basis of x. It follows from (R2) that the space N is regular.
Since N is a regular T,-space, N is a T;-space.

Proof R4 : Every product space of two T,-spaces is a T;-space.
Let (M;S) and (N;V) be T;-spaces. Let their product space be (W;P) with
W =M x N and the product topology P. For a point x and a closed set A there are
disjoint open sets §,,S, €S inthe T;-space M such that xe S, and ACS,,. Like-
wise, for a point y and a closed set B there are disjoint open sets V,V, &V in the
Ts-space N such that ye V, and B CV,,. Hence for the point (x,y) and the closed
set A x B the product space W possesses the disjoint open sets P, = S, xV, and
P, =8, xV, with (x,y)e P, and AxBCP,.
Let Q be an arbitrary closed set in the product space W which does not contain the
point (x,y). Then the complement Q is an open set which contains (x,y) and is a
union of basis elements B; of the product topology P. At least one basis element
B, := C x D contains (x,y).

Q c MxN - CxD
The sets C x N and M x D are cartesian products of closed sets which do not con-
tain (x,y). Thus by the above there are disjoint open sets T, S¢ with (x,y) € T
and C x Nc S as well as disjoint open sets Ty, Spwith (x,y)e T andMxDCS.
The set T Ty is open and contains (x,y). The set S, N S is open and disjoint
from TN Tp. It contains Q. Hence (W ; P) is a T4-space.

QcS,uSy = (MxN —CxN)u (MxN — MxD) = MxN - CxD

Normal space : A topological space is said to be normal if for every two disjoint
closed sets A, and A, there are disjoint open sets 5, and S, suchthat A, €S, and
A,CS,. A normal space is not necessarily a T,-space. For example, the set
M ={a,b,c} with the topology S = {0, {a}, {b}, {a,b}, M} is a normal space, but by
(E2) it is not a T;-space, since the one-element set {a} is not closed :

closed sets : 0, {c}, {a,c}, {b,c}, {a,b,c}

disjoint closed sets  : A,=0and A,e{{c}, {a,c}, {b,c}, {a,b,c}}
open sets : 0, {a}, {b}, {a,b}, {a,b,c}

normality of (M;S) A,C 0 and A,C {a,b,c}

The normal space shown in the example is also not regular. The only open super-
setof,the,closed set{chis{asb;clinthepoint a, which is not contained in {c}, does
not have an open neighborhood disjoint from {a,b,c}.
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A normal T,-space is called a T,-space and has the following properties :
(N1) Every T,-space is a T;-space.

(N2) Every metric space is a T,-space.

(N3) Subspaces of metric spaces are normal.

(N4) Product spaces of metric spaces are normal.

Proof N1 : Every T,-space is a T;-space.

Ina T,-space, let A be a closed set and let x be a point not contained in A. Since
the T,-axiom holds in the T,-space, there is a closed set {x} disjoint from A. Since
the T,-space is normal, there are disjoint open sets S, and S, with {x} CS,, that
isxe S;,andACS,. Hence the T -space is regular. Thus the T,-space is aregular
T,-space, and hence a T;-space.

Proof N2 : Every metric space is a T,-space.

Let a metric space (M;d) be given. Let A and B be disjoint closed sets in M. First
it is proved that for a fixed point xeA there is a distance ax >0 such that
d(x,y) > axforally € B. Assume this assertion to be false. Then every e-ball around
x contains a point of B. Hence x is a point in the closure of B, and therefore a point
in the closed set B. The result xeB contradicts the hypothesis AnB = §. Hence
the assertion is true.

The open set D(x,0.5 a,) does not intersect B. Thus the union R= U D(x,0.5 ay)
is an open set which contains A and does not intersect B. Analog)é)%sly, an open
set S is constructed which contains B and does not intersect A. Assume that the
sets R and S are not disjoint. Then there are points xeA and y B such that
D(x,0.5 ax) n D(y, 0.5 ay) = 0, that is 0.5(ax + ay ) >d(x,y). Without loss of gen-
erality, assume ay = ay, so that ay = 0.5(ayx + ay) > d(x,y). The contradiction
with d(x,y) > ay shows that contrary to the assumption the open sets R and S are
disjoint. From Ac R,Bc Sand Rn S = 0, it follows that the metric space (M;d) is
a T,-space.

Proof N3 : Subspaces of metric spaces are normal.

Let (M; d) be a metric space, and let (N ; d) be a subspace with NC M. Then N is
also metric, and thus normal by (N2).

Proof N4 : Product spaces of metric spaces are normal.

Let (M;d) and (N;s) be metric spaces. Let their product space be (W;t) with
W =M xN. For points x;eM, y;eN and (x;,y;) €W, let

t2 (X4, ¥9), (X5,¥5)) = d2(x1, Xp) + SZ(Ysz)
Since d and s are metrics, the positive square root t also has the properties of a
metric. The e-balls of the metric t form the basis of a metric topology. Since the
conditions for the equivalence of bases derived in Section 5.3 are satisfied, the to-
pology.inducedby-t,coincideswiththe,product topology of the space W. Hence the
space (W;t) is metric, a product space and by (N2) normal.
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Hierarchy of the separation properties : The properties of the space types T,
to T, show that every T;-space has the separation properties of the preceding
space type T, _,, and hence the properties of all preceding space types. In particu-
lar, metric spaces have all properties of the space types T, to T,, since every met-
ric space is a T,-space and hence also a T;-,T,-,T,- and T,-space.

Subspaces and product spaces of a space of type T, to T are of the same type.
Subspaces and product spaces of a T,-space may be normal. For example, the
subspaces and product spaces of metric spaces are normal.

Example 1 : T,-space

Let (M;T) be a topological space with the underlying set M = {a,b} and the topol-
ogy T = {0, {a}, M}. The open set {a} satisfies the T,-axiom, since it contains the
point a but not b. The T,-axiom is not satisfied, since there is no open neighbor-
hood of b which does not contain a.

Example 2 : A finite topological space is a T,-space if and only if it is discrete.

(1) Inafinite T,-space (M;S), let a be an arbitrary fixed point. By the T,-axiom,
for every point x = a in M there is an open neighborhood of a which does not
contain x. The finite intersection of these open sets is the open set {a}, which
by construction contains only the point a. Since the point a is arbitrary, the
space (M; S) is discrete.

(2) Letthe space (M;S) be discrete. Then arbitrary points a = x in M have the
disjoint open neighborhoods {a} and {x}. Hence every discrete space is a
T,-space.

Example 3 : Every discrete space is a T,-space

In Section 5.3, it is shown that every subset of a discrete topological space (M; T)
is both open and closed. Let the subsets A and B be disjoint and closed. Then A
and B are also disjoint open sets with AC A and BC B. Hence M is a T,-space.

Example 4 : T,-space with finite-complement topology

Let (N ;S) be a topological space. The underlying set N contains the natural
numbers {1,2,...}. The topology S contains @, N and every open set S, for which
N - §; is finite. For example, S; ={10, 11, 12,...} is an element of the topology. This
topology is called the finite-complement topology.

If a = b are arbitrary points of N, then the open set S; = N - {b} contains the point
a but not b. Likewise, the open set S, = N —{a} contains the point b but not a.
Hence (N ; S) is a Ty-space.

Any two non-empty open sets S; and S in S contain an infinite number of common
pointssTherefore the points:a:and:b.cannot possess disjoint open neighborhoods.
Hence (N ; S) is not a T,-space.
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5.10 CONVERGENCE

5.10.1 SEQUENCES

Introduction : An iterative mathematical procedure is said to be convergent if it
identifies a point of a topological space (M ; T). Convergence has inspired thought
since antiquity : "Does an arrow ever reach its goal by repeatedly covering half of
the remaining distance?” Today, a carefully defined concept of convergence is the
basis for iterative approximation methods and search methods in structured sets.

There are iterative methods whose result depends on the order of the steps, and
methods whose steps may be executed in an arbitrary order. An iterative method
is said to be directed if the order of the steps is determined by a mapping f: G - M
from a directed set G. An iterative method is said to be undirected if convergence
is studied with a filter (a subset of the power set P(M)), whose elements may be
considered in an arbitrary order.

Directed iterative methods are particularly suitable for metric spaces. The metric
of the space serves to quantify convergence. If the well-ordered set N of the natural
numbers is used as a directed set, then the mapping f: N — Mis called a sequence.
If G is a general directed set, then the mapping f : G— M is called a net.

Undirected iterative methods are more general than directed methods, since no
order structure is required in the filter F c P(M). For convergence to a limit x & M,
it suffices that every neighborhood of x includes an element of the filter F. The order
in which the neighborhoods of x and the elements of F are considered is irrelevant.

The concepts of sequence, net and filter and the related concepts of subsequence,
series, subnet and filter basis are treated in this section. In particular, the conver-
gence of iterative methods and the uniqueness of limits are studied. The unique-
ness of limits is seen to depend critically on the separation properties of the space.

Sequence : A mapping ffrom the natural numbers N to the points of a topological
space (M; T) is called a sequence in M. The images x,, of the mapping are called
the terms of the sequence.

f:N—=M with f(n) = x,
The image of a sequence is not the same as the sequence. For example, the
sequence < a, b, a,b,... > has the image {a, b}. While a sequence is by definition
infinite, in this example the image is finite.

A sequence is said to be constant if its terms are all equal and the image {c} there-
fore,consists,of a;single point;The,sequence is said to be real if the underlying set
Mis real. The mapping f is called a sequence of functions if M is a set of functions.
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Limit : A point x of a metric space (M d) is called the limit of a sequencef:N — M
if for every positive real number ¢ there is a natural number n, such thatforn=n,
the distance d(x,x,) is less than €. The limit of a sequence is designated by lim.
The limit is a point of the underlying set M, but it is not required to be a term of the
sequence f.

im x,=x = A V (n=n
n—o

= d(x,x,)<¢)
>0 nyEN

0

This definition of the limit is alternatively formulated as follows :
(1) Forall € >0, d(x,x,) < ¢ for almost all terms.
(2) Forall € >0, d(x,x,)= ¢ for at most a finite number of terms.

Convergence in metric spaces : Asequencef : N — Minametric space (M;d)
is said to converge (be convergent) to a point x in M if x is the limit of the sequence.
A sequence in a metric space has at most one limit. The sequence is said to be
divergent if it does not have a limit.

Proof : A sequence in a metric space has at most one limit.

In a metric space (M;d), let f : N — M with f(n) = x,, be a sequence with two
different limits a and b. By property (M2) of a metric d(a, b) = & > 0. For every real
number ¢ > 0 there are natural numbers n, and ny, for which :

da x;) <e for i

v

Na

d(b, x,) <e for m = n,
With ny=max (n,,n,), it follows that foralln=n :
d(a,x,) <e¢ and d(b,x,)<¢

Property (M4) of a metric implies :

d(a,b) = d(a,x,) +d(b,x,) < 2¢ forall nz=n,
The choice ¢ = 2 leads to the contradiction d(a, b) <2¢ = 6. Hence the limits a and
b are equal. Thé sequence therefore has at most one limit.

Component sequence : Letasequence f: N —=R™ with f(n) = x, be given.
Let the k-th coordinate of the vector x, be x, . Then the sequence f, : N =R
with f(n) = x,, is called the k-th component sequence of f. The following
relationship holds between a sequence f and its component sequences f, :

(K1) Aseguence f: N —R™ inthe euclidean space (R™; d) converges if and only
ifiitsscomponentisequencesiinithesspace (R ; d) converge. The components
of the limit of the sequence are the limits of the component sequences.
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Proof K1 : Convergence of sequences and component sequences

(1) Letthe sequence f converge to the point ac R™. Then for every £ >0 there
is an n, €N such that for all n = n, one has |x, — a| < &. For the euclidean
metric this implies |x, — a,| < . Hence f, converges to a,..

(2) Let the component sequence f, converge to the limit a, eR fork=1,..,m.

Then for every & >0 there is an nje N such that for all n=n, one has
Xok — @] < Lm For the euclidean metric it follows that

=

m
x,—a| < (X — )2 <
k=1

2

[¢]

*m = €

3|

Hence f converges to a.

Fundamental sequence : To prove the convergence of a sequence using the
concepts defined up to now, the limit must be known beforehand. If the limit is not
known, one can determine whether the sequence is a fundamental sequence
(Cauchy sequence).

Asequencef : N — Minametric space (M; d) is said to be fundamental if for every
positive real number ¢ there is a natural number n, such that d(x;,x,,) < € for all
imz=n,.
’ 0

fisfundamental = A V (im=n, = d(x,x;) <e)
€>0 nyEN

Properties of fundamental sequences

(F1) In a metric space every convergent sequence is fundamental. Hence it is a
necessary condition for the convergence of a sequence in a metric space that
the sequence is fundamental.

(F2) In a metric space there are sequences which are not fundamental.

(F3) In the one-dimensional real space (R ;d) a sequence is convergent if and
only if it is fundamental.

(F4) In the euclidean space (R" ; d) a sequence is fundamental if and only if its
component sequences are fundamental.

(F5) In the euclidean space (R";d) a sequence is convergent if and only if it is
fundamental.

Proof : Properties of fundamental sequences

(F1) Iff : N — M converges to the limit x in a metric space (M; d), then for every
positive real number ¢ there is a natural number n, such thatd(x, x;) <0.5¢
foralli=ng;andbyproperty(M4)of metrics d(x;, X,,) < d(x;, X) +d(x, X)) < &
forall i,m = n,. Hence the convergent sequence f is fundamental.
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(F2)

(F3)

5.10.1 Convergence : Sequences

In the space (R ;d) with euclidean metric d, let the harmonic sequence

f : N = R be defined as follows :
n

Xy = f(n) = k;%

This sequence is not fundamental. With the choices € =0.5, n= n, and
m = 2n for an arbitrary natural number n,, the distance between the terms
X, and x, of the sequence is :
2n
- 1_ 1 1 I
A Xy) = > 1 (n+1 +...+2n) >n(2n) e

k=n+1

The sequence is not fundamental, since d(x,,, x,,) > .

It follows immediately from (F1) that every convergent sequence in (R ; d)

is fundamental. Conversely, let a fundamental sequence f : N — R with

f(n) = x,, be given. A subset A of the rational numbers Q is constructed :
A:i={qeQ | V V A (x,=q+9)}

48>0 n,EN n=n,

The subset A has the properties of an open initial :
(1) Forq,req,if r<qgthen qgeA = reA.
(2) The set A has no greatest element, since g A implies (q + %) eA:
A (x,2q+8) = A (x,=@q+2)+ 9
nzn, n=n, 2 2
An open initial in the rational numbers is a real number (see Chapter 6).
To emphasize this aspect of A, the designation A is replaced by a. In the
following the real number a is shown to be the limit of the sequence

f:N—-R: Foralle >0o0nehasd(a, x,,) = € foratmost a finite number
of terms.

The proof is carried out indirectly. Let there be an € >0 such thatd(a, x,) = ¢
for an infinite number of terms. Then at least one of the following must be the
case :

(1) x,<a—¢ for an infinite number of terms

This case cannot occur. Since every rational number q in the range
a—e<(q<aiscontainedinA, thereisa 6 >0and an n, €N such that
X, =g+ dforn = n,. Hence x,, <a — ¢ can hold for at most a finite num-
ber of terms.

(2) x,=a+e¢ for an infinite number of terms
This case cannot occur either. Since f is fundamental :

Vo A (X Xm) < -Z-)

NeEN imzn,
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Since x,, = a + ¢ foran infinite number of terms, there is an n, = n, with

1="0
Xy, Za+te. From n, , it follows that all points x, with k= n, lie in
the interval x,, —g<xk<x +§Sincex ——2->(a+£)—§—a+g,

this implies x >a + £ fork = n,

For every rational number in the range a<q<a+ £ it follows that
x >a+ g >q+ % forall k = n,. Hence g €A, contradicting q > a.

it follows from (1) and (2) that there is no € > 0 such that d(a, x,,) = ¢ for an
infinite number of terms. Thus for every € >0 one has d(a, x,,) = € for at most
a finite number of terms : The real number a is the limit of the sequence f.

(F4) (1) Let the sequence f : N — R" be fundamental. Then for every ¢ >0
thereisan ny €N suchthat i,m = n, implies |x; — x| <t. Forthe k-th
component sequence f, : N —>R W|th f (i) = x;, the properties of the
euclidean metric imply that |x; — x| <e. Hence f, is fundamental.

(2) Letthe component sequence f, be fundamental fork =1,...,n. Then for
every £ >0 there is an nj €N such that [x, — x, |<e//n for all
i,m=ng . Thenforalli,m = n,=maxn, the euclidean metric yields :

n 2
€
s\/kz (X — i )? <\/~m £nN = ¢
=1

Hence f: N — R" is fundamental.

(F5) This statement is proved using the equivalences (K1), (F3) and (F4) :

The sequence f is fundamental <
Every component sequence f, is fundamental <
Every component sequence f, is convergent <
The sequence f is convergent

Complete space : A metric space (M;d) is said to be complete if every funda-
mental sequence f : N — M has a limit x in M. Thus in a complete metric space it
is a sufficient condition for the convergence of a sequence that it is fundamental.

Improper convergence : A real sequence in the euclidean space (R ;d) is said
to be improperly convergent if for every real number a there is a natural number
n, such that f(n) = x,>a forall n>ng or f(n)=x,<a foralln>n,.

lim x, = © = AV (n>n;, = x,>a)
n— aER nyeN
limxp==smmEsnATVaEn >n, = x, <a)

aER ny,EN
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Monotonic and bounded sequences : Let a total order relation be defined on
the underlying set M of a topological space. Then a sequence f : N — Mis said to
be (strictly) monotonic if for every neN one of the following relationships holds :

increasing @ X, =X, 4 strictly increasing @ X, <X,

decreasing :  X,=X, 1 strictly decreasing : X, > X, 4

A sequencef : N — Mis said to be bounded from above if there is an upper bound
aeM such that x,, < a for every neN. The sequence f is said to be bounded from
below if there is a lower bound b &M such that x,, = b for every neN. A sequence
is bounded from above/below if and only if its image is bounded from above/below.
A set bounded from above has a least upper bound. A set bounded from below has
a greatest lower bound.

Proof : A set bounded from above has a least upper bound.

Let A be the set of upper bounds of a set MCR bounded from above. In the
following A is shown to be closed. Therefore the set A is either empty (contrary
to the hypothesis that M is bounded from above), or it contains its lower boundary
point ; this point is the least upper bound of M.

A point y of the complement A is not an upper bound of M. Hence there is a point
x €M with x >y such that 1 -, x[ is an open neighborhood of y which is entirely
contained in A. Thus A is open, and hence A is closed.

Monotonic real sequences : The one-dimensional euclidean space (K ;d) is
totally ordered. Hence it is possible to determine whether a given real sequence
f : N =R is monotonic. In a general metric space, a total order relation must be
defined before the monotonicity of a sequence can be studied.

Convergence of monotonic real sequences : Every monotonic real sequence
is either convergent or improperly convergent. If a monotonically increasing real
sequence is bounded from above, then it converges to its least upper bound a. If
a monotonically decreasing real sequence is bounded from below, then it con-
verges to its greatest lower bound b.

increasing with x,<a : lim x,=a with A V (n>n

= d(a,x,) <e¢)
e>0nyEN

0

decreasing with x, =b : lim x,=b with A V (n>n, = d(b,x,) <e)
N—> £>0ny,EN
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Proof : Convergence of monotonic real sequences

(1) Letareal sequence <x4,X,....> be monotonically increasing. If the sequence
is bounded from above, it has a least upper bound a. Hence for every real
number & >0 there is a natural number n, with d(a, x, ) <& and Xp, < a.
Since the sequence increases monotonically and a is the least upper bound,
Xn, <X, and d(a,xn) < for n >n,. Hence the sequence converges to the
limit a :

AV (n>n, = dax,) <e)
£>0 nyEN

(2) Assume that the monotonically increasing real sequence <Xy, X,...> does
not have a least upper bound. Then for every real number a there is a natural
number Ny such that Xn, > a. Since the sequence increases monotonically,
n>n, implies xn =< x,. The sequence is improperly convergent :

AV (n>n, = x,>a)
aER nEN

(3) The proof for monotonically decreasing sequences is analogous.

Nested intervals : The closed intervals I, := [a,, b,] on the real axis R are said
to be nested if the real sequences f : N —R with f(n)=a, and g:N —R with
g(n) = b, have the following properties :

ay<ap,y1<b, y<b, and lim (b,-a,) =0

Since the euclidean space (R ; d) is complete, the intersection of the nested inter-
vals I, contains exactly one point. This point p is the limit of the strictly monotonic
sequences <a,,a,,..>and <b,,b,,..>. The sequences do not contain the point p.

NIy={p} A |ma,=p A limb,=p

Proof : Convergence of nested intervals

Fori > nitfollows by inductionthat a; < b; < b,,. Fori <nitfollowsthat a,< a, < b,,.
Hence the monotonic sequence <ay,a,,...> is bounded from above by b,,. Let p
be the least upper bound of <ay,a,,..>. Then a, <p < b, so that p is contained
in the interval 1,,, that is p € [a,,,b,].

The point p is contained in the intersection N1, of all the nested intervals. If another
point x #p were contained in NI, then né\N (b, - a, = |p—x|) would hold,
contradicting lim (b, — a,) = 0. Hence p is the only point contained in NI, = {p}.
For every real number ¢ there is thus an n, €N such that d(p, x,) < eforn >n,.
Hence p is the limit of the sequence <a,,a,,...>. Then by item (1) of the following
theorems,forlimits lim(bg—aq)=0-mplies that p is also the limit of <b4,b,....>.
Hence both sequences converge to the limit p.
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Theorems for limits : Letthe sequences <a,, a,,...>and<by, b,,...> be conver-
gent. Then derived sequences have the following limits :

lim(a,) = lim (by)

n—o n— oo

(1) lim (ay % by)

(2) lim(ay-by) = lim(a,) - lim(by)
n—»>oc n—o n—ow

(3) lim (ﬁ) = lim(a,) / lim(y,) if by,=0, imby=0
n— oo bn n—w n—co n—o

(4) lim (|an]) lim (ap)

n—o

Example 1 : Convergence of a sequence
Let a sequence be defined as follows in the euclidean space (R ;d) :

n+1

with neN
2n n

X, =
In the following the limit of this sequence is shownto be x = % The distance d(x,x,)
is estimated :

d(X,Xn) = Aa

For arbitrary real € >0, choose n, > % The preceding inequality then implies the
convergence of the sequence :

1 1 >
n<no < g for n=n,

d(x,x,) <
Example 2 : Fundamental sequence

For the sequence in Example 1, the distance d(x,, x,) is estimated with m,n > n,
for arbitrary n, € N :

n-m| . _1

~ |2mn 2n,

d(xm1 Xn) = ij-n1 - n2+r_.11 ‘

The sequence is fundamental, since for arbitrary real ¢ >0 a number n, > 1 may

2¢
be chosen. Then

d(X Xp) < € forall m,n>n,
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Example 3 : Monotonic sequence
The sequence in Example 1 is strictly monotonically decreasing :

—x - h+1 _ n+2 _ 1 >0

n+1 2n on+2  2n(n+ 1)

The sequence is bounded from below by x, > -12- It converges to the greatest lower
bound b = %

Example 4 : Limits of sequences

ok
im®E =0 for kel

n—w N!

lim nkx" = 0 for keN and Ixl <1
n-—> oo

im X =0 for XER

n—w N!

lim "/n = 1

n— o

lim (1 +%)” = e = 2.718281...
n—s o
Example 5 : Geometric sequences

A sequence f : N — R in the euclidean space (R ;d) is said to be geometric if the
ratio ¢ = x,,, 1 / X, of consecutive terms of the sequence is constant. If the ratio
¢ is positive, the sequence is monotonic. If the ratio ¢ is negative, the sequence
is said to alternate.

sequence f : N — R is geometric < f(n)=wc" A cweR

The convergence of geometric sequences is determined by the ratio ¢ :

C =<- : divergent
1 <c< 1 convergent with limit O
c=1 convergent with limit w
c>1 improperly convergent with limit £

(@) Forc=<-1andc=1 the statement is self-evident.

(b) To prove convergence for —1 <c <1 in the euclidean space (R ;d), let
¢|=51 with s>0 and (1+s)" >1-+ns, and hence |e" < 5. For
every number £ >0 there is a natural number ng > (x, - €)/es such that
d(0,x,¢") < e forall n>n,. Hence the limit is 0.

A V (nzn, = d(0,x,c")<e)

£>0 ngEN Y



236

5.10.1 Convergence : Sequences

To prove improper convergence for c>1, let ¢=1+s with >0 and
(1+s)" >1+ns. For x; >0 and every real number a = x, there is a natural
number n,>(a- xy) / sx; such that x,c">a for all nx=n,. Hence the
sequence converges improperly to «. For x; <0 and every real number
a < x, there is a natural number n, such that x,c" <a for all n = n,. Hence
the sequence converges to —.

xx>0: AV (nzn, = x,c">a)
aE€R n,eN

xy<0: AV (nzn;, = x4c"<a)
a€R nyEN

The following diagram shows two monotonic geometric sequences with ¢ = 0.7 but
different terms x, =-5.0 and x,= 5.0, along with an alternating geometric
sequence with ¢ = -0.7 and x, =5.0.

R
so]
— Xy= 50 c¢c= 07
0 D R BN —— Xy = 50 ¢=-07
\ S o -~ Xy =-50 c¢c= 07
5.0 o//b//
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5.10.2 SUBSEQUENCES

Introduction : In a metric space a convergent sequence has exactly one limit.
A divergent sequence does not have a limit. However, in special cases a divergent
sequence may be divided into convergent subsequences. This leads to the con-
cept of accumulation points of sequences and thus to the concepts of the superior
limit and inferior limit of a sequence of numbers.

Subsequences : Let a mapping f: N — M be an arbitrary sequence in a metric
space (M; d). Leta mapping k:N —N with k(n) = k, be a strictly monotonically in-
creasing sequence. Then the composition fok is called a subsequence of the
sequence f.

fok:N—=M with fok(n) = f(k(n)) = f(k,) = Xy,
Subsequences in metric spaces have the following properties :

(T1) A sequence converges if and only if each of its subsequences converges. In
this case every subsequence converges to the same limit.

(T2) If a sequence has two subsequences which converge to different limits, the
sequence is divergent.

Proof : Properties of subsequences
(T1) By definition, a sequence f:N — M which converges to the limit x satisfies

AV (n>n

= d(x, x,)<e
£>0 nyEN % xp) <€)

0

Since the sequence k:N —N is strictly monotonically increasing, there is a
number iy such that k(i;) = n,. Hence the composition fok is a convergent
subsequence of f with limit x :

ANV (i>i

= d(x,x, )<e
e>0ip€N 0 o X) <€)

Conversely, let every subsequence fok be convergent. Then for every sub-
sequence there is exactly one limit a, and for every real number ¢ > 0 there
is a natural number i eN such that :
fok:N—=M with fok(i) = f(k;) = x,
d(a,x, ) <e for all =
i

i
0

The sequence f is a subsequence of itself and hence convergent by hypo-
thesis. Its limit is the limit x of the sequence f.

f:N-—->M with f(m) = X

d(x,x,) <€ for all m=m,
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With n, = max (k(i;), m,) it follows that

d(a,x, )< e for all ki=n,

I
d(x,x,) < ¢ for all n=n,

Let the limits a and x be different. By property (M2) of metrics, their distance
is d(a, x) =0 > 0. Property (M4) of metrics yields :

d(a,x) = d(a,x, ) + d(x,x, ) < 2¢ for all k; = n,
1 I

The result d(a, x) < 2¢ contradicts d(a,x) = 6 > 0, since for every 8 > 0 there
is an € >0 such that 2e <. Hence the limits a and x are equal. All sub-
sequences fok and the sequence f have the same limit x.

(T2) Let the limits a and b of the subsequences fog and fok of a sequence f in
ametric space (M; d) be different. Let the sequence f converge to the limit x.
Then by (T1) the limits of the sequence f and of the subsequences are equal,
that is a = b = x. This contradicts the hypothesis a = b. Hence contrary to the
assumption the sequence f is divergent.

Accumulation point of a sequence : A point x of a topological space (M;T) is
called an accumulation point of the sequence f : N—M if every neighborhood of x
contains an infinite number of terms of the sequence. These terms may be scat-
tered throughout the sequence. A sequence may have more than one accumula-
tion point. Accumulation points need not be terms of the sequence f, but they must
be points of the topological space M.

A point x of a metric space (M;d) is an accumulation point of the sequence
f: N—Mif for every real number ¢ > 0 and every natural number n, there is a term
X, of the sequence with n > n such that d(x,x, ) < ¢.In a sequence f with an accu-
mulation point x there is a subsequence fok with the limit x.

x is an accumulation pointof f <> A AV (d(x, x,) <¢)
€>0 ngEN n>ny

Proof : In a sequence f with an accumulation point x there is a subsequence fok
with the limit x.

A strictly monotonically increasing mapping k : N— K with k(n) = k,, is constructed

for the sequence f. The terms of k are chosen such that d(x, x, ) < €, = 27" for

X, =f(ky). Thentokis a subsequence. Its limitis x, since d(x, X, ) < En, fornz=n,,.

Accumulation point of a set : An accumulation point of a set is an inner point
or boundary point of the set which is not isolated. This concept must not be con-
fused with the concept of an accumulation point of a sequence in the set. Every
accumulation pointof aset A:= {x, | n e N }inametric space is also an accumula-
tion point of a sequence f: N—A. The converse of this statement is false ! For
example;xis:anaccumulationpointofthe sequence f : N — {x} with f(n) = x, but not
an accumulation point of the one-element set {x}.
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Proof : In a metric space every accumulation point of a set is also an accumu-
lation point of a sequence.

In a metric space (M; d), let x be an accumulation point of a set AC M. Let the open
ball with center x and radius % forneN be D, :=D(x, %). A point x,, may be chosen
in each of the intersections AN D,,. These points are the terms of a sequence f :

f:N—-R" with f(n) = x, € AnD,

For every real number ¢ >0 and every natural number n, >0 there is an n>n

0
such that % < ¢. Hence the center x is an accumulation point of the sequence f.

AN AV (dx,x,) <)

£>0 ngeN n>n,

Improper accumulation point : Areal sequence f : N—R with f(n) = x,, has the
improper accumulation point « if for every real number a and every natural number
n, there is a term x,, of the sequence with n > ny and x, >a. The improper accu-
mulation point —« is defined analogously.

Superior limit : The greatest accumulation point a of a sequence <x4, X, ,...> in
the set of real numbers is called the superior limit (limit superior, lim sup) of the
sequence. For every real number ¢ > 0 and every natural number n, >0 thereis
an n > n, such that x, > a-¢. For every real number € > 0 there is also a natural
number n, such that x,, <a + ¢ for all n> n,. The superior limit may be an im-
proper accumulation point.

a = limsup <xq,X,,.> < AN ANV (x,>a—g) A
€>0 nyEN n>ng

ANV A (x,<a+e)

e>0 n;EN n>n,

Inferior limit : The least accumulation point b of a sequence <x,,X,,..> in the
set of real numbers is called the inferior limit (limit inferior, lim inf) of the sequence.
For every real number ¢ > 0 and every natural number Ny>0thereisann>n,
such that x, <b +¢. For every real number ¢ > 0 there is also a natural number
ny such that x, > b —¢ for all n > n. The inferior limit may be an improper accu-
mulation point.

b = liminf <xy,Xy,.> e AN NV (x,<b+g) A
€>0 ngEN n>n,

ANV A (x,>b—¢)

€>0 n,EN n>n;



240 5.10.2 Convergence : Subsequences

Example : Accumulation points of sequences

(1) The sequence <1,—1,1,-1,...> has the accumulation points 1 and —1. The
image {1,~1} of the sequence consists of the two points —1 and 1.

(2) The sequence <1, % 1, %,1, %,...> has the accumulation points 1 and 0. The
accumulation point 1 is a term of the sequence, but the accumulation point
0 is not.

(3) Thesequence<t, ), 1 . shas exactly one accumulation point 0, which is not
a term of the sequence.

(4) The sequence <1,—1,2,-2, 3,-3...> does not have any proper accumulation
points, but it has the improper accumulation points « and —.
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5.10.3 SERIES

Introduction : In applications, one often needs the sum of the terms of a real
sequence. This cannot be determined directly, since the sequence is infinite. One
therefore defines a series whose terms are partial sums over a finite number of
terms of the real sequence. If the series possesses a limit, then this is the desired
sum. Several convergence tests for series are treated in the following.

Series : In the euclidean space (R ;d), let f: N—-R be a real sequence with
f(n) = x,. The sum of the first m terms of f is called the m-th partial sum of the
sequence f and is designated by s.,. The sequence <8, s,,...> of partial sums
is called the series associated with the sequence f and is designated by 2x,,. The
difference s,,—s, of the m-th and n-th partial sums is called a segment of the
series. If the series <s;, s,,...> converges to a limit s, then s is called the sum of
the sequence f.

m
Sm = Z Xn
n=1

(7]
Il

dm, s

Absolutely convergent series : A series Xx,, is said to converge absolutely (be
absolutely convergent) if the sequence X |x,| of the partial sums of the absolute
values of its terms converges. A series which converges but does not converge
absolutely is said to be conditionally convergent.

Proof of convergence : There is no general method for proving the conver-
gence of a series and determining its limit. However, there are tests for the conver-
gence of series. There are also comparison tests which allow the convergence of
series to be inferred from the convergence of other series. Some of these tests are
treated in the following.

Convergence tests : Of the following tests, (K1) and (K5) are necessary condi-
tions for the convergence of a series, and (K1) to (K4) are sufficient conditions.

(K1) Cauchy test: A series Xx,, is convergent if and only if for every real number
¢ >0 there is an index n, beyond which the absolute values |s;,—s,| of all
segments of the series are less than e.

x,converges < A V (mznz=n, = |s,-s,/<¢)

£>0 nyEN
m
sooAnVam=nzn, = | x/|<¢g)
£>0 nyEN K=n
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(K2) Monotonicity test: A series 2x,, with terms x,, =0 converges if and only if the
sequence <8, S,,...> of partial sums is bounded.

(K3) Leibniz test: Let a sequence <X, X,,...> be monotonically decreasing with
limit 0. Then the sequence of partial sums of the alternating sequence
<Xy,~Xp, X3,—Xg,...> IS CONvergent.

(K4) Ratio test: For a sequence <Xy, X,,...>, let every term x,, = 0. If there is a
real number ¢ such that beyond an index n, the absolute value of the ratio
of consecutive terms is less than 1, thatis |x,,, ; /X,| <=cwithc <1forn>n,,
then the series 2x,, is absolutely convergent.

(K5) Trivial test: If the series 2x,, converges, then the sequence <X, X,,...> cON-
verges to 0. The converse of this statement is false : If the terms of the se-
quence <Xy, X,,...> converge to 0, it cannot be inferred that the series Zx,
converges.

Proof : Convergence tests

(K1) Cauchy test : By (F3), a sequence in the euclidean space (R ;d) is conver-
gent if and only if it is fundamental. A series which satisfies the Cauchy test
also satisfies the condition for a fundamental sequence, and conversely.

ANV (iim= d(s;, s) <
£>0n061\1(I Ny = (I m) 8)

(K2) Monotonicity test : For the sequence <s;, Ss,...> of the partial sums of a
sequence <X, X,,...> With x,, =0 it follows that s, = s, for m >i. Hence the
sequence XX, =<Sy, S,,...> Of partial sums is monotonically increasing.

(@) Let the series Zx,, be bounded. Then Section 5.10.1 shows that 2x,
converges.

(b) Letthe series =x,, be unbounded. Then Section 5.10.1 shows that =x,
converges improperly, and hence diverges.

(K3) Leibniz test : The partial sums s, of the alternating sequence <Xy, —X,, X3,
—Xg4,...> are

n
Sn = > (=) X
k=1

The sequence <s;, S,,...> of partial sums converges if it passes the Cauchy
test (K1), that is if

AV (mznzn, =
£>0 nyEN

< g)

m
kz (_1)k+1 Xk
=n
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(K4)

Since the sequence <X4, X,,...> decreases monotonically and x, — 0, it fol-
lows that x,, >0 and (x, — X,,,¢) = OforallneN. Forodd valuesof m—n:

m
kz (_1)k+1 Xk
=n

|(—1)”Jr1 (Xn = Xpo1 F Xy — o + Xpy_q — xm)|
= ‘ (Xn = Xni1) + Xy = Xqpg) + oo+ Xy = xm)|
= Xy = Xpp1) T Xppo = Xppg) + oo+ Koq — X))
= Xn = (Xpp1 = Xpp2) = o = Koo = Xm_q) = X

S Xy = [Xpl

For even values of m—n:

§ (_1)k+1 Xk

k=n

= [ D™ (g = Xnpq F o F Xp_p = X Xp)|
= |(xn—xn+1)+...+(x 2—xm“1)+xm|

Xy = Xniq) + oo+ Koo — X)) + X,

m—

I

= Xn = (Xnp1 = Xpp2) = = Xpog = Xm)

Xn = |Xp]

IA

Since x,— 0, for every real number & >0 there is an index n such that
[X,| <€ for n=n,. Hence the sequence <s, sy,...> passes the Cauchy test
of convergence :

g (=1)% x,

k=n

= |xyl<e foralmz=nzn,

Ratio test : The first ny terms of the sequence <X, X,,...> have no influence
on the convergence of the series Xx,, and are therefore omitted without loss
of generality. Thus, let <X,, X,,...> be a sequence with ’an /xn| = cforall
neN. For the sequence <|x,|, |X,l,...>, the difference of the partial sums s,
and s, is formed and estimated for0<c <1withm=n=n;:

Sm—Sn =< C"Xq[+ " x;[+ ...+ x|
- ~n—1
= (1+c+...+c™ " 1)e" x4
1-cm-n
= "I
-C
Cn
Sm-—Sn E |X1‘ and Sm—Sn >O

For every real number ¢ >0 there is a natural number n, such that c" |x,|
<&(1-c). Hence the series X |x,,| passes the Cauchy test of convergence :

ANV (m=n=n, = s .=s.|<¢
£>0n0€N( v [Sm=sn| <)
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(K5) Trivial test : Let the series 2x,, be convergent. Then by (K1) for every real
number ¢ >0 there is an index n, such that the segment |s, — s, _4| = |X,|
of the series satisfies | x,,| < € fori =m =n > n,. Hence the terms x,, converge
to 0.

Conversely, let <x4, X,,...> be a sequence whose terms converge to 0. Then

the series 2 x,, is not necessarily convergent. For example, in the proof of (F2)

in Section 5.10.1 the sequence of partial sums of the sequence <1, % %>

is shown to diverge, although the terms x,, = % converge to zero.
Comparison tests : The following tests allow the convergence of a series to be
inferred from the convergence of another series.

(V1) Every absolutely convergent series is convergent. The absolute value |2x,, |
of the limit of an absolutely convergent series is less than or equal to the limit
3|x,| of the series of the absolute values.

(V2) Ifthe series Zx, and Xy, are convergent, then for arbitrary numbers a,b e R
the series Z(ax, + by,) is also convergent.

(V3) If the series Xx,, and Xy, are convergent and x,, <y, for all n, then the limit
of Zx, is less than or equal to the limit of Zy,,.

(V4) If the series Zx,, is absolutely convergent and a sequence <ay, a,,...> is
bounded, then the series XZa, x, is absolutely convergent.

(V5) If the series Xx, is convergent and a monotonic sequence <ay, a,,...> is
bounded, then the series Za, x,, converges.

(V6) If the series Zx,, is convergent and there is a natural number n, such that
0 <|y,| =x, for all n > n,, then the series Xy, is absolutely convergent.

Proof : Comparison tests

(V1) Let the series =x,, be absolutely convergent. Then, according to the Cauchy
test of convergence, for every real number ¢ >0 there is a natural number
ngsuchthatforallm=nz=n;:

[1Xal + Xp gl e+ (X4l < €

From |xq + Xo| < [X4]+[X5|, Oneobtains |xq + ... + X | < [Xq] + ... + [X]
by induction. Hence |Z x,| < X |x,|. Also, the series Zx, passes the Cauchy
test:

AV om=En=ng o X EXgL,  + .+ Xy _q| <€)
e>0 noEN
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(V2) Let the limits of the convergent series Zx,, and 2y, be x and y, respectively.

(V3

~

~

Let the n-th terms of their sequences of partial sums be s, and t,,, respec-
tively. Then

ANV (n>n, = [x-sp| <& A |y—ty] <9)
8>0 n,EN

For the sequence with the terms (as, +bt,) :

‘(ax + by) — (asp + btp)| la(x—sp) + b(y—ty)|

IA

|af [x=8n| +[b]|y=ta|
(lal +[b[) &

IA

The series Z(ax, + by,) converges to (ax + by), since the condition for limits
is satisfied by the choice d =¢/(|a| + |b|):

ANV (n>n, = d(ax+by, as,+bt,) < ¢
£>0 ngEN

Let the limits of the convergent series =x, and 2y, be x and y, respectively.
Then the proof of (V2) shows that the series Z(y, —x,, ) converges to a limit
d=y-x.Fromd,=y; - x;=0 it follows that d =0, and hence x < y.

For the bounded sequence <a,, a,,...> there is a real numbery > 0 such that
lap| < y for all n. Let the i-th partial sum in the series X|x, | be s,. Then for the
i-th partial sum t; in the series Z|a, x,| one obtains :

i
0=t = Z1Jakxk| = Ykz1lxk‘ = Vs

Since by hypothesis the series Xy, converges absolutely, the partial sums
s; are bounded. Therefore the partial sums t; < v s; of the series X|a,, x| are
positive, monotonically increasing and bounded. Hence the series = a,, x,, is
absolutely convergent.

The partial sum t, of the series X a, x,, is partially summed with the partial
sums s, of the series Zx, and s, := 0.
i

i i i
b= D agx = D a(sg—sc_q) = Yags— > a sy
K=1 K=1 K=1 K=1

i1 i1

s+ X A S — Y 8,q S
K=1 k=1
i—1

i a;s; + k21 (8= a4 1) S

—
Il
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By the comparison test (V4), the series <1, t,,...> is absolutely convergent
if the sequence <s;, S,,...> is bounded and the series Z(a, — a, , ;) is abso-
lutely convergent. Since the series Zx,, converges, the sequence <s;, s,,...>
is bounded. The partial sum w, of the sequence X|a, —a, , ,| is determined
using the monotonicity of the sequence <ay, a,,...>:

= |ay = a4

K k
Wk = ,Z1|ai - a4 = ‘_21(ai_ak+i)
i= i=

Since the sequence <a,, a,,...> is monotonic and bounded, the sequence
<Wy, W,,...> is also monotonic and bounded ; its terms are positive. By the
monotonicity test (K2), the series X(a, — a, _ ;) is therefore absolutely con-
vergent. Hence by (V4) the series X a,, x,, is absolutely convergent.

(V6) Thetermsy,to Yn, have no influence on the convergence of the series. Thus,
consider a series <Xy, X,,...>With 0 <]y, | = x, foralln =1, and hence x,, = 0.
Since the convergent series Xx,, passes the Cauchy test (K1), for every real
number ¢ > 0 there is a natural number k, such that

X + Xpyq + oo + X4 < € forall mz=nzk,
Xp + Xppq F ot Xpog <€
Vol + Ynsql+ o F1Yp_q <€ forall mz=nzk,

Hence the series Xy, is absolutely convergent.

Grouping in series : The sequence <s,, s,,...> of the partial sums of a se-
quence f: N —R with f(n) = x, is formed according to the rule s,:=0ands__ ;=
s, + X, forn=1,2,... . Inthe partial sum s, = x; + X, + ... + X, the additions are
thus performed sequentally from left to right.

If terms of a sequence are grouped by parentheses, this defines a new sequence,
and therefore also a new sequence of partial sums and a new series. For example,
the grouping (x; + X,) + (X3 + X,4) + ... leads to the sequence <y, Yo,...> with
Yi = Xp_1 + Xy The sequence <Yy, Y,,...> is @a mapping g: N =R which is not
identical with the mapping f: N — R of the sequence <Xy, X,,...>.

The convergence behavior of a series which is constructed from another series by
grouping cannot in general be inferred from the convergence behavior of the origi-
nal series. The following example shows that the series defined by the groupings
1—-1+1-1+.,(0-D)+(1-D+..and 1 +(-1+1)+(-14+1)+ ... have
different convergence properties :
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(1) The sequence f: N—R with the terms <1, -1, 1, —1,...> generates the
divergent series <1, 0, 1, 0,...>.

(2) The sequence g: N —R with the terms <(1 —1), (1 —1),...> generates the
convergent series <0, 0,...> with the limit 0.

(3) Thesequenceh:N—R withtheterms<1,(—1+1),(—1+1),...>generates
the convergent series <1, 1,...> with the limit 1.

If a convergent series 2x,, is used to construct a series Xy, by grouping, then the
latter is also convergent. The limits of the series coincide.

Proof : A series derived from a convergent series by grouping is convergent.
Let a series Zx,, be convergent with limit a. For the sequence <sy,s,,...> of partial

sums of this series :
AN V (n>n, = das,) < e

£>0 nyeN

Let a mapping h: N —N with h(k) = n, be strictly monotonically increasing with
n; =0. Then the numbers n, _, and n, define a segment of the sequence <X, X,,
...>. Letthe sum of the terms in this segment be a term y, of anew series Zy,,. With
Sp:=0and k=1.2,.., it follows that

Yei= X _ 41t Xn 4ot ot X = S —Sn

Thus the sequence of partial sums of the sequence <y, Y,...> is <Sn,, Sny-er>.
By property (T1) in Section 5.10.2, this subsequence of the convergent sequence
<84, Sp,...> cOnverges to the same limit a.

Example 1 : Convergent series

e=&+%+%+%+...+% + .
%=&—%+%——31—!+..:tnl! F .
2=}+%+%+%+...+% + .
%=%—%+%—%+..:&% F .
In2=%—%+%—%+..i% F .
TN RS R R
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Example 2 : Geometric series
In Example 5 of Section 5.10.1, geometric sequences f: N — R with f(n) = x,, are
defined such that x,,, /X, = c. The partial sum s, of a geometric sequence is
given by

1—cn
1-c

Sy = X{(1+c+c®+...+c" ) = X,

The fixed ratio ¢ determines the convergence of the series as follows :

c=<-1 : The series diverges
. . 1-cn Xy
-1 <ec< 1 ¢ The series converges to lm —x; = ——
n—o 1—C 1_'C
c=z1 The series converges improperly to + «

Example 3 : Evaluation of alternating convergent series
Grouping is demonstrated using the example of the alternating harmonic se-
quence <1, - % % - %, ...>, whose associated series passes the Leibniz test and
hence converges. The exact limit of the series is In2 =0.693147... . Parentheses
are introduced in the partial sum as follows : (1 - %) + (% - %) + ... Thus the
partial sums of the following sequences are calculated :

fiN=R with f(n) = x, = 1 (1)1

1 1 - 1

g:N—=R with g(n) =y, = on-1 2n m

n 1 2 3 4 5
X, 1.000000 0.500000 0.833333 0.583333 0.783333
Zyn 0.500000 0.583333 0.616667 0.634524 0.645635

The series =y, converges monotonically, in contrast to the series =x,,. There are
other series for In 2 which converge far more rapidly, for instance :

_ —_14\3 _1\5
Inx = 2[" T, &x=1°  (x=1) +] with x>0

Xx+1  3(x+1)3  5(x+1)5

n 1 2 3 4 5
2z, 0.666667 0.691358 0.693004 0.693135 0.693146

Convergence is further improved by using a known valiue e near 2. For example,
let 2 =we®'s with seN and choose s such that 1 <w < e%'=1.105171. This
leads to s =6 and w = 1.097623. With Inx = 0.6 + Inw, the series for In w and Inx
then yield in two steps :

n 1 2
Inw 0.093080 0.093147
In x 0.693080 0.693147
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5.10.4 NETS

Introduction : In the definition of the limit of a sequence f: N —M in a metric
space (M; d), the total ordering of the natural numbers N is used. The question
arises whether a more general definition of convergence is possible involving a
mapping f: G — M for which the set G is not necessarily totally ordered. As an ex-
ample of such a definition, the convergence of nets is treated in this section. In a
net, G is a directed set and (M; T) is a general topological space.

Directed set : A partially ordered set G is said to be directed if for any two
elements a, § G there is a yeG which is greater than or equal to a and § :

Gisdirected = A A V (yza A y=
is directed < FANICAR YeG(y o vy=p)

Net : Amapping ffrom a directed set G to the points of a topological space (M; T)
is called a net in M. The images x,, of the mapping are called the terms of the net.
The net is designated by {x,}. A sequence is a special case of a net, since the
natural numbers N are a directed set.

f:G—=M with f(a)=x,

Accumulation : Anet f: G—M in a topological space (M; T) is said to accumu-
late in a set AC M if for every element a € G there is an element § = a in G such
that f(B) €A.
faccumulatesinA = AV (B=a A f(B)eA)
aEG BEG

Final segment : A netf: G—M in a topological space (M;T) is said to have a
final segment in a set AC M if there is a. € G such that f(§) €A for all § = a.

f has a final segmentin A < VG([iZa = f(B)eA)
ae

Let H be the set of elements f G for which § =a and f(f) €A. Then the net
f: H— M is called the final segment of f in A. A point y €M may occur more than
once as a term of the final segment. However, by definition the point y is contained
only once in the image E_ of the final segment.

Eq = {x, =B | p=a)

The final segments of a net have the following properties :

(E1) If a net hass final segments in two sets A and B, then the net has a final
segment in the intersection ANB of these sets.

(E2)nifsthesintersectioniofitworsetsiArand B is empty, then a net cannot have final
segments in both A and B.
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Proof : Properties of final segments

(E1) Ifanet f: G—M has afinal segmentin a set AC M, then there is an element
o € G such that f(8) € A for every 6 = a. If the same net also has a final seg-
ment in the set BC M, then there is an element § €G such that f(¢) B for
every € = .

For a, p G the directed set G contains an element y such that y = o and
y = B. Since the directed set G is partially ordered, n=vy and y = o implies
n = a. Likewise, n =y and y = § implies n = f. Hence f(n) € A and f(n) €B for
all n = y. This implies f(n) e AnB forn =vy.

(E2) Let a net f: G — M haves final segments in the sets ACM and BC M. Then
by (E1) there is an element y G such that the term f(y) of the net lies both
in A and in B. This contradicts the hypothesis that AnB is empty. Hence, con-
trary to the assumption, the net does not have final segments in disjoint sets
A and B.

Convergence : Anetf: G— Mis said to converge to a point x of the topological
space (M; T) if f has a final segment in every neighborhood U, € M of x. The point
x is called a limit of the net f.

fconvergestox <« A V (E,cU)
Uy a€G

Nets have the following convergence properties :

(K1) The closure of a set A is exactly the set of the limits of all convergent nets
whose image lies in A.

(K2) A topological space is a Hausdorff space if and only if every convergent net
has a unique limit.

Proof K1 : The closure of a set A is exactly the set of the limits of all convergent
nets whose image lies in A.

(1) Letanetf: G— M withimage f(G) C A converge to a point x e M. Then by the
definition of convergence the net f has a final segment in every neighborhood
U of x. Every neighborhood of x thus contains a point of A. Hence the limit
x is a point of the closure H(A).

() Letthe closure H(A) of a set AC M be given. Let G be the set of open neigh-
borhoods U, W,... of an arbitrary point xeH(A). The set G is ordered using
the relation ¢, thatisU=W < UCW. From UnWc U and UnW C W it fol-
lows that UnW = U and UnW =W; hence the set G is directed. Every inter-
section UnW is an open neighborhood of x. By the definition of the closure,
thejintersectiondnAiisinotemptysHence thereisanetf: G—Awith f(U) = x,
and x,€ UnA, and thus x,A.



Topological Structures 251

The net f has a final segment in every open neighborhood U of x, since Z = U
with x eZ cU implies f(Z) = x,€ U. Hence f converges to the point x. Since
the choice of x in H(A) was arbitrary, every point xH(A) is a limit of a net
whose image lies in A.

Proof K2 : A topological space is a Hausdorff space if and only if every conver-

(1)

gent net has a unique limit.

Let the space (M; T) be a Hausdorff space. Let a net f: G — M converge to
two different points x =y of M. Then by the definition of a Hausdorff space
these points have disjoint neighborhoods U, n U, = 0. By property (E2), the
net f does not have final segments both in U, and in U, . Therefore, contrary
to the assumption, the net does not converge to two different points.

Assume that the space (M; T) is not a Hausdorff space. Then there are points
x =y in M which cannot be separated by open sets. Let S, and T, be open
neighborhoods of x, and let S, and T, be open neighborhoods of y. The carte-
sian product G of the neighborhood systems of x and y contains ordered pairs
suchas a :=(S,,Sy) and f := (Tx,Ty). The set G is ordered by the relation
=, thatisfza:e T, CS, A T, C Sy. The intersection T, N T, is not empty,
since the points x and y cannot be separated by open sets. With the directed
set G, there is thus a net f: G — M with f(B) e T, N Ty

B=z=a = fPeT,cS,cU,) = netfconverges tox

Bza = fBeT,cS cU,) = netfconvergestoy

Hence the limit of a net is not unique in a space which is not a Hausdorff
space.

Final mapping : Strictly monotonically increasing mappings are used to define
subsequences in Section 5.10.2. Final mappings are now defined in order to trans-
fer this concept to nets. A mapping h: H — G between directed sets G and H is said
to be final if for every element o.e G there is an element f € H such that the images
of all elements y =3 of H are greater than or equal to o :

hisafinalmapping = A V (y=p = h@y)=a)
a€G peEH

Subnet : Letamappingf: G — Mbe an arbitrary netin a topological space (M ; T).
Letamapping h : H— G be final. Then their composition foh is called a subnet of f.

foh:H—>M with foh(y) = f(h(y) = f(o) = Xa,
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Convergent subnet : Anet f: G—M possesses a subnet which converges to
a limit xeM if and only if f accumulates in every neighborhood of x.

Proof : Convergent subnet

It is assumed that f : G — M is a net which accumulates in every neighborhood of
a point xeM, and it is shown that there is a final mapping h: H— G, where the
directed set H contains ordered pairs (o, A) with a € G, xe A and f(a) €A. Then the
composition fo h: H— M is by definition a subnet. The subnet converges to the
point x if every neighborhood of x contains a final segment of fo h.

(1) LetS:={A,B,...} be the set of neighborhoods of the point x. In the cartesian
product G x S, consider the subset H of ordered pairs (a, A) for which f(a) € A.

H:={(a,A)e GxS | f(a) €A}

(2) The set H is ordered by the relation (8, B) = (a,A) > f=a A BCA. For
arbitrary elements (a,A) and (B, B) of H there is a § G such that f(yY) cAnB
forally = 8, since by hypothesis the net accumulates in every neighborhood
of x. In particular, the directed set G contains an element y =a, 3,6, and
(v, AnB)isanelement of Hwith (y, AnB) = (o, A), (B, B). Hence His directed.

(3) The mapping h : H— G with h(a,A) = a is final. For every a € G the directed
set H contains the element (o, M). By definition (8, B) = (o, M) implies § = a,
and hence h(f, B) = a. Thus by definition h is final.

(4) LetAbeaneighborhood of x. Since by hypothesis the net f accumulates in A,
there is a € G such that f(a) € A. Consider elements (B, B) = (o, A). According
to the partial ordering of H, B C A. With h(B, B) = §, it follows that f o h(B, B) =
f(B). The definition of H implies f(8) €B. Hence fo h(B, B) €A for all (8,B) =
(a,A). Thus f o h has a final segment in every neighborhood A of x : The sub-
net converges to the limit x.

foh has a final segmentin A < (VA) ((B,B) = (a,A) = foh (B,B)eA)
a,

Conversely, let xeM be a limit of a subnet fo h. Then every neighborhood of x
contains a final segment of f o h. Hence f accumulates in every neighborhood of x.

Universal net : A netf: G— M is said to be universal if for every subset ACM
it possesses a final segment either in A orin M — A. Universal nets have the follow-
ing properties :

(U1) The composition p o f of a mapping p : M — N with a universal netf: G—>M
is a universal netpof: G—N.

(U2) For every net there is a universal subnet.
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Proof U1 : Thecomposition of amappingp : M—N with a universalnetf: G—-M
is a universal netpof: G—N.

Let A be a subset of N with the preimage p~'(A) in M. Since the net f is universal,
it possesses a final segment either in the preimage p~'(A) or in the complement
M —p~'(A)2 p~'(N — A). The image of every point of a final segment in p~!(A) lies
in A. The composition p o f therefore has a final segment either in A orin N — A.
Hence the net p o f is universal.

Proof U2 : For every net there is a universal subnet.

(1) Letamappingf: G— M be anet. Consider the set F of the subsets F, of the
power set P(M) which satisfy the following conditions :

(@) AeF = faccumulates in A
(b) A,BeFi = AﬂBEFi

An example of such a subset is furnished by F,={M}c P(M ). The set

={F,, F,,...} is partially ordered by inclusion. Let F'= {Fk , ...} be
an arbitrary totally ordered subset of F, thatis F, C F, Vv Fk c Fk The
union of the elements of F' satlsﬂesthecondltlons( )and and is therefore
an element of F, and hence an upper bound of F' in F.

By property (E4) of ordered sets in Section 4.6, F contains a maximal element
Fo- Thus F is not properly contained in any of the elements F; . If a further
element of P(M) is added to F, the result is a set which properly contains F
and is therefore not contained in F. Hence this set does not satisfy conditions
(a) and (b).

(2) ThesetZ,:={(A,a)eFy;xG | f(a) €A} is partially ordered by the relation
= as follows :

(B,p)=(A,a) < BCA A B=ua

The set Z, is directed. In fact, if (A, ) and (B, p) are two arbitrary elements
of Z,, then (b) yields C := AnB e F,. For a and f the directed set G contains
an element y with y =2a and y =f. From (a) and CeF,, it follows that f
accumulates in C, so that there is a 6 =y with f(8) eC. Thus the set Z, con-
tains an element (C, 8) with (C, d) = (A, a) and (C, d) = (B, ), and it is there-
fore directed.

The mapping h: Z,— G with h(a,A) = a is final. In fact, if o is an arbitrary
element of G, then for a freely chosen set B € F there is a § = a with f(§) €B
since by (a) f accumulates in B. Hence (B, p) is an element of Z,. For every
(CypeZgwithn(Cyy)=(Byp)ritsfollows that h(C,y) =y =f =a. Hence h is
final, and f o h is a subnet. In the following this subnet is shown to be universal.
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Let S be a subset of Min which the subnet foh : Z,—M accumulates. Then
for every element (a,A) € Z, there is an element (B, B) = (@, A) in Z,such that
foh(B,B)eS.ThenBCA, p=aandf(p) =foh(p, B)cBimpliesf(f)eBNSC
AnS, and hence the net f: G —M accumulates in AnS for every AeF,,
Thus an accumulation of the subnet f o h in an arbitrary subset S of M corre-
sponds to an accumulation of the net f in the intersection AnS for every ele-
ment A€ F,,. Since F, is maximal, S and every AnS are elements of Fj,.

Assume that the subnet fo h also accumulates in the complementary set
M —S. Then M-S, like S, is an element of the set F,. By hypothesis the
intersection SN(M — S) = ¢ must also be an element of F,. Since the net
does not accumulate in the empty set, it follows that, contrary to the assump-
tion, the subnet f o h does not accumulate in M — S. Hence the subnet foh
has a final segment in S, but no final segmentin M —S.

If S is a subset of M in which the subnetfo h : Z;— M does not accumulate,
then f o h has a final segment in M — S. Altogether, it follows that fo h has a
final segment either in S orin M —S. Hence fo h is a universal subnet of f.
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5.10.5 FILTERS

Introduction : In this section the concept of convergence in a topological space
(M;T) is generalized further. Instead of sequences f: N — M with totally ordered
sets N and nets f: G — M with directed sets G, a filter F is now considered.

Afilter F contains subsets of the underlying set M of the space. The filter converges
to a point x € M if every neighborhood of x contains an element of the filter. A con-
vergent filter is thus a contracting system of subsets of M which points to a point
x of M. Very general search processes can be described using this concept.

In analogy with a topology T on M, a filter F on M has a basis B which is easier to
deal with. In general, it is the filter basis which is used to study convergence. Com-
pared with the concepts of a se